Simultaneous determination of the nonlinear-elastic properties of skin and subcutaneous tissue in unconfined compression tests

2007 ◽  
Vol 13 (1) ◽  
pp. 34-42 ◽  
Author(s):  
John Z. Wu ◽  
Robert G. Cutlip ◽  
Michael E. Andrew ◽  
Ren G. Dong
Author(s):  
Eugene T. Kepich ◽  
Roger C. Haut

Effective Poisson’s ratio (EPR) of articular cartilage in compression is an important parameter, which is inversely correlated with stiffness of the collagen fibers [1]; and thus, if known, could provide valuable information about integrity of the collagen network in the tissue. Unfortunately, direct determination of the EPR by measuring lateral expansion during unconfined compression tests [2], while being effective, due to it’s destructive nature many times is not desired and/or hard to apply in practice. Optically-determined values of equilibrium EPR for bovine humeral articular cartilage using this method are reported to be in range 0.185±0.0065.


1965 ◽  
Vol 2 (2) ◽  
pp. 116-128 ◽  
Author(s):  
Earle J Klohn

Dense, heavily preconsolidated glacial till is a relatively incompressible soil that occurs throughout most of Canada. When loaded, it undergoes very small settlement, most of which is elastic. For the average structure, these elastic compressions are too small to be of concern and are usually ignored. However, for some structures they can be critical and their magnitude must be estimated prior to construction. To make the necessary analyses requires knowledge of the elastic properties of the in situ glacial till.This paper presents the results of field and laboratory tests that were made on a dense glacial till deposit to determine its modulus of elasticity, in connection with the design and construction of a 100 ft. high combined earth and concrete dam. In the field, in situ loading tests were made against the walls of a 50 ft. deep test shaft. The modulus of elasticity was computed, using elastic equations applicable to the case of a rigid circular plate pressed against a semi-infinite elastic solid. Moreover, during construction of the project, measurements were made of the elastic rebounds and settlements that occurred under known conditions of unloading and loading. Steinbrenner’s approximate solution for computing settlement due to loads acting on the surface of an elastic layer was then used to compute the apparent modulus of elasticity. In the laboratory, unconfined compression tests and repetitive triaxial tests were made on undisturbed samples. The modulus of elasticity was estimated from the stress-strain relationships obtained.The data presented in the paper indicate that the apparent, in situ modulus of elasticity of the glacial till deposit is very high, being in the order of 150,000 lb./sq. in. Reasonable agreement exists between modulus of elasticity values computed from the in situ plate bearing tests and those computed from observed rebounds and settlements. However, modulus of elasticity values computed from unconfined compression and repetitive triaxial tests in the laboratory are apparently too small, being only a fraction of those values obtained by the field procedures. Sample disturbance is thought to be a major factor affecting laboratory test results.Grain size characteristics, density, natural water content, and strength properties of the glacial till deposit are presented in the paper. These data provide a comprehensive description of the material and permit comparison with glacial till deposits encountered at other areas.


2011 ◽  
Vol 115 (16) ◽  
pp. 4826-4833 ◽  
Author(s):  
Erasmo Ovalle-García ◽  
José J. Torres-Heredia ◽  
Armando Antillón ◽  
Iván Ortega-Blake

Author(s):  
Jayant Kumar Dahre

Abstract: This Paper describes the beneficial impact of reinforcing the sub-grade layer with a single layerof geo-grid at different positions and thereby determination of optimum position of reinforcement layer. The( best) optimum position was determined based on California Bearing Ratio (CBR value) and unconfined compression tests were conducted to decide the optimum position of geo-grid. The CBR value of a soil increases by 50-100% when it is reinforced with a single layer of geogrid. The amount of development (Improvement) depends upon the type of soil and position of geo-grid. CBR of sub-grade soil is 6.53% without reinforcement and when geo-grid was placed at 0.2H from the top, the CBR value increased to 19.66%. Soaked Condition CBR of sub-grade soil is 4.77% without reinforcement and when geo-grid was placed at 0.2H from the top, the CBR value increased to 4.46%. Keywords: Pavement, Geo-grid, Reinforced, Sub-grade, CBR, Filtration, Reinforcing


2020 ◽  
Vol 5 ◽  
pp. 150-156
Author(s):  
Yohan Jacquet ◽  
Vincent Picandet ◽  
Damien Rangeard ◽  
Arnaud Perrot

This paper presents testing methods based on the deformation and fracture of fresh cementitious materials only subjected to their own weight. These new methods are dedicated to the study of cementitious materials designed for 3D printing of concrete in order to verify rheological requirements related to the process. The first testing methods consists in measuring the tip deflection of a fresh cementitious materials, horizontally extruded, and allows for the determination of apparent elastic modulus of the material, while the second test consists in measuring the tensile strength of material filament leaving the nozzle of a vertical downward extruder. Both methods are based on the video capture of the deformation of the materials loaded by gravity, and provide results that are in agreement with tests performed with conventional testing machines (tensile and unconfined compression tests). This work shows the potential of the video capture of the gravity induced deformation of cementitious materials to describe behavior of cementitious materials at fresh state or for the in-line control of the 3D concrete printing process.


1978 ◽  
Vol 48 ◽  
pp. 287-293 ◽  
Author(s):  
Chr. de Vegt ◽  
E. Ebner ◽  
K. von der Heide

In contrast to the adjustment of single plates a block adjustment is a simultaneous determination of all unknowns associated with many overlapping plates (star positions and plate constants etc. ) by one large adjustment. This plate overlap technique was introduced by Eichhorn and reviewed by Googe et. al. The author now has developed a set of computer programmes which allows the adjustment of any set of contemporaneous overlapping plates. There is in principle no limit for the number of plates, the number of stars, the number of individual plate constants for each plate, and for the overlapping factor.


Sign in / Sign up

Export Citation Format

Share Document