scholarly journals Increasing Strength of Sub-grade Layer of Pavement using Geo-grid

Author(s):  
Jayant Kumar Dahre

Abstract: This Paper describes the beneficial impact of reinforcing the sub-grade layer with a single layerof geo-grid at different positions and thereby determination of optimum position of reinforcement layer. The( best) optimum position was determined based on California Bearing Ratio (CBR value) and unconfined compression tests were conducted to decide the optimum position of geo-grid. The CBR value of a soil increases by 50-100% when it is reinforced with a single layer of geogrid. The amount of development (Improvement) depends upon the type of soil and position of geo-grid. CBR of sub-grade soil is 6.53% without reinforcement and when geo-grid was placed at 0.2H from the top, the CBR value increased to 19.66%. Soaked Condition CBR of sub-grade soil is 4.77% without reinforcement and when geo-grid was placed at 0.2H from the top, the CBR value increased to 4.46%. Keywords: Pavement, Geo-grid, Reinforced, Sub-grade, CBR, Filtration, Reinforcing

Author(s):  
Eugene T. Kepich ◽  
Roger C. Haut

Effective Poisson’s ratio (EPR) of articular cartilage in compression is an important parameter, which is inversely correlated with stiffness of the collagen fibers [1]; and thus, if known, could provide valuable information about integrity of the collagen network in the tissue. Unfortunately, direct determination of the EPR by measuring lateral expansion during unconfined compression tests [2], while being effective, due to it’s destructive nature many times is not desired and/or hard to apply in practice. Optically-determined values of equilibrium EPR for bovine humeral articular cartilage using this method are reported to be in range 0.185±0.0065.


2020 ◽  
Vol 5 ◽  
pp. 150-156
Author(s):  
Yohan Jacquet ◽  
Vincent Picandet ◽  
Damien Rangeard ◽  
Arnaud Perrot

This paper presents testing methods based on the deformation and fracture of fresh cementitious materials only subjected to their own weight. These new methods are dedicated to the study of cementitious materials designed for 3D printing of concrete in order to verify rheological requirements related to the process. The first testing methods consists in measuring the tip deflection of a fresh cementitious materials, horizontally extruded, and allows for the determination of apparent elastic modulus of the material, while the second test consists in measuring the tensile strength of material filament leaving the nozzle of a vertical downward extruder. Both methods are based on the video capture of the deformation of the materials loaded by gravity, and provide results that are in agreement with tests performed with conventional testing machines (tensile and unconfined compression tests). This work shows the potential of the video capture of the gravity induced deformation of cementitious materials to describe behavior of cementitious materials at fresh state or for the in-line control of the 3D concrete printing process.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Silvia Zaoli ◽  
Piero Mazzarisi ◽  
Fabrizio Lillo

AbstractBetweenness centrality quantifies the importance of a vertex for the information flow in a network. The standard betweenness centrality applies to static single-layer networks, but many real world networks are both dynamic and made of several layers. We propose a definition of betweenness centrality for temporal multiplexes. This definition accounts for the topological and temporal structure and for the duration of paths in the determination of the shortest paths. We propose an algorithm to compute the new metric using a mapping to a static graph. We apply the metric to a dataset of $$\sim 20$$ ∼ 20 k European flights and compare the results with those obtained with static or single-layer metrics. The differences in the airports rankings highlight the importance of considering the temporal multiplex structure and an appropriate distance metric.


2016 ◽  
Vol 716 ◽  
pp. 114-120 ◽  
Author(s):  
Sebastian Mróz ◽  
Piotr Szota ◽  
Teresa Bajor ◽  
Andrzej Stefanik

The paper presents the results of physical modelling of the plastic deformation of the Mg/Al bimetallic specimens using the Gleeble 3800 simulator. The plastic deformation of Mg/Al bimetal specimens characterized by the diameter to thickness ratio equal to 1 was tested in compression tests. The aim of this work was determination of the range of parameters as temperature and strain rate that mainly influence on the plastic deformation of Mg/Al bars during metal forming processes. The tests were carried out for temperature range from 300 to 400°C for different strain rate values. The stock was round 22.5 mm-diameter with an Al layer share of 28% Mg/Al bars that had been produced using the explosive welding method. Based on the analysis of the obtained testing results it has been found that one of the main process parameters influencing the plastic deformation the bimetal components is the initial stock temperature and strain rate values.


1970 ◽  
Vol 7 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Roland Pusch

A series of unconfined compression tests has been made on a marine, quick clay and small specimens were extracted for microstructural investigation. The natural microstructural pattern was characterized by a network of small aggregates connected by links of particles. The links broke down successively at increasing shear deformation and formed domain-like groups of particles. In the macroscopic shear zone the shear forces tended to orient and deform the aggregates.The aggregates behaved as rigid bodies to a certain stress level during the shear process. The concept of residual strength may correspond to the state where the majority of the links have been broken while the aggregates are still intact.


2012 ◽  
Vol 2 (1) ◽  
Author(s):  
R. Angelova

AbstractThe paper presents an experimental procedure developed for determination of the pore size, shape and distribution in a single layer woven fabric, for the construction of a virtual model to be incorporated in a future CFD software package. The procedure is based on non-destructive observation and analysis of woven samples. 14 different samples of gray fabrics of 100 % cotton in plain and twill weaves are investigated. The results obtained allow the creation of reality more realistic virtual model of the woven structure, and theoretical investigation of its porosity and permeability through computer simulation.


1983 ◽  
Vol 14 (1) ◽  
pp. 155-156 ◽  
Author(s):  
K. K. Ray ◽  
A. K. Mallik

Sign in / Sign up

Export Citation Format

Share Document