Impacts of Courtyard Geometrical Configurations on Energy Performance of Buildings

2019 ◽  
Vol 4 (10) ◽  
pp. 29
Author(s):  
Abdulbasit Almhafdy ◽  
Norhati Ibrahim ◽  
Sabarinah Sh Ahmad

The courtyard is an architectural design element often regarded as microclimate modifiers. It has the potential of improving comfort conditions within the outdoor courtyard space and the enclosing indoor spaces. Harnessing the optimum benefits of courtyards depends on several conditions namely the orientation and configurations of the courtyards, as well as the treatment of the external surfaces of the enclosing building envelopes. As three variables of orientation, number of floors and wall envelope have not been investigated in a single study, therefore, this parametric study was performed to investigate the microclimatic influence of varying courtyard geometric configurations and its enclosing facades in hot and humid climate using IES<VE> simulation tools. The study observed the environmental impact regarding thermal performance and energy consumption of the enclosing indoor spaces. The results suggest optimum conditions to harness the potential of courtyards to lower energy consumption of buildings in the tropics.Keywords: courtyard; thermal performance; energy consumption; simulationeISSN: 2398-4287 © 2019. The Authors. Published for AMER ABRA cE-Bs by e-International Publishing House, Ltd., UK. This is an open access article under the CC BYNC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians) and cE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia.DOI: https://doi.org/10.21834/e-bpj.v4i10.1637

2021 ◽  
Vol 6 (16) ◽  
pp. 81-91
Author(s):  
Amalina Safiah Jasni ◽  
Sabarinah Sh Ahmad ◽  
Mariam Felani Shaari ◽  
Ricardo B Sánchez

The greenhouse is vital to protect indoor crops from the harsh hot-humid climate. This study firstly identifies design attributes of greenhouses such as dimension, shapes, orientation, and shading. Secondly, it assesses the impacts of design attributes on the greenhouse daylight performance using VeluxVisualizer. The results showed an increase in the number of skylights caused higher average daylight illuminance in the greenhouse. All the models passed the requirement for plants with small sunlight claim between 7 and 9 hours per day. This study paves the way for energy-efficient buildings with the aid of building simulation to benefit the users. Keywords: Greenhouse Design Features, Daylight Simulation, Hot and Humid Climate eISSN: 2398-4287© 2021. The Authors. Published for AMER ABRA cE-Bs by e-International Publishing House, Ltd., UK. This is an open access article under the CC BYNC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians/Africans/Arabians) and cE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia. DOI: https://doi.org/10.21834/ebpj.v6i16.2711


2016 ◽  
Vol 1 (1) ◽  
pp. 199
Author(s):  
Elizabeth Grant

The Indigenous peoples of north east Arnhem Land in Australia (Yolngu) overlay their culture with the customs and social behaviour of other societies to achieve positive outcomes and autonomy. Passing down cultural knowledge is intrinsic to the cultural identity of Yolngu. The paper discusses the recently completed Garma Cultural Knowledge Centre and examines the cultural knowledge conveyed through the medium of contemporary architecture design. The paper finds that the Garma Cultural Knowledge Centre combined aspects of non-Aboriginal and Aboriginal cultures to form a coherent whole with multi-facetted meanings. © 2016. The Authors. Published for AMER ABRA by e-International Publishing House, Ltd., UK. Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians) and cE-Bs (Centre for Environment-Behaviour Studies, Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia.Keywords: People and environments; cultural knowledge; architecture; indigenous architecture


2018 ◽  
Vol 3 (13) ◽  
pp. 149 ◽  
Author(s):  
Nattha Savavibool ◽  
Birgitta Gatersleben ◽  
Chumporn Moorapun

In the work environment, colour is considered an important design element used to improve aesthetic qualities of the environment and for a company’s branding. This paper reviews existing research on the effects of workplace colour on worker’s mood, wellbeing and other work-related outcomes. In total 40 papers fitted the inclusion criteria and were included in the review. The results show a significant influence of colour on affect (e.g. mood, emotion), wellbeing (e.g. stress, comfort, wellbeing), and performance (e.g. productivity, performance, creativity). The review concludes with suggestions for further research.Keywords: Colour perception; Colour psychology; Effect of colour; Work environment.eISSN 2398-4295 © 2018. The Authors. Published for AMER ABRA cE-Bs by e-International Publishing House, Ltd., UK. This is an open-access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians) and cE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia. DOI: http://dx.doi.org/10.21834/ajbes.v3i13.152


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5038
Author(s):  
Goopyo Hong ◽  
Chul Kim ◽  
Jun Hong

In commercial buildings, HVAC systems are becoming a primary driver of energy consumption, which already account for 45% of the total building energy consumption. In the previous literature, researchers have studied several energy conservation measures to reduce HVAC system energy consumption. One of the effective ways is an economizer in air-handling units. Therefore, this study quantified the impact of the outdoor air fraction by economizer control type in cooling system loads based on actual air-handling unit operation data in a hospital. The optimal outdoor air fraction and energy performance for economizer control types were calculated and analyzed. The result showed that economizer controls using optimal outdoor air fraction were up to 45% more efficient in cooling loads than existing HVAC operations in the hospital. The energy savings potential was 6–14% of the differential dry-bulb temperature control, 17–27% of the differential enthalpy control, 8–17% of the differential dry-bulb temperature and high-limit differential enthalpy control, and 16–27% of the differential enthalpy and high-limit differential dry-bulb temperature control compared to the no economizer control. The result of this study will contribute to providing a better understanding of economizer controls in the hospital when the building operates in hot-humid climate regions.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3038 ◽  
Author(s):  
José Sánchez Ramos ◽  
MCarmen Guerrero Delgado ◽  
Servando Álvarez Domínguez ◽  
José Luis Molina Félix ◽  
Francisco José Sánchez de la Flor ◽  
...  

The reduction of energy consumption in the residential sector presents substantial potential through the implementation of energy efficiency improvement measures. Current trends involve the use of simulation tools which obtain the buildings’ energy performance to support the development of possible solutions to help reduce energy consumption. However, simulation tools demand considerable amounts of data regarding the buildings’ geometry, construction, and frequency of use. Additionally, the measured values tend to be different from the estimated values obtained with the use of energy simulation programs, an issue known as the ‘performance gap’. The proposed methodology provides a solution for both of the aforementioned problems, since the amount of data needed is considerably reduced and the results are calibrated using measured values. This new approach allows to find an optimal retrofitting project by life cycle energy assessment, in terms of cost and energy savings, for individual buildings as well as several blocks of buildings. Furthermore, the potential for implementation of the methodology is proven by obtaining a comprehensive energy rehabilitation plan for a residential building. The developed methodology provides highly accurate estimates of energy savings, directly linked to the buildings’ real energy needs, reducing the difference between the consumption measured and the predictions.


2015 ◽  
Vol 137 (7) ◽  
Author(s):  
Toufic Zaraket ◽  
Bernard Yannou ◽  
Yann Leroy ◽  
Stéphanie Minel ◽  
Emilie Chapotot

Occupants' behavior exerts a significant influence on the energy performance of residential buildings. Industrial energy simulation tools often account for occupants' as monolithic elements with standard averaged energy consumption profiles. Predictions yielded by these tools can thus deviate dramatically from reality. This paper proposes an activity-based model for forecasting energy and water consumption of households and discusses how such an occupant-focused model may integrate a user-focused design of residential buildings. A literature review is first presented followed by a brief recall of the proposed modeling methodology and a sample of simulation results. The possible integration of the proposed model into the design and energy management processes of residential buildings is then demonstrated through a number of use cases.


Author(s):  
El Hassan Ridouane ◽  
Marcus V. A. Bianchi

Uninsulated wall assemblies are typical in older homes, as many were built before building codes required insulation. Building engineers need to understand the thermal performance of these assemblies as they consider home energy upgrades if they are to properly predict pre-upgrade performance and, consequently, prospective energy savings from the upgrade. Most whole-building energy simulation tools currently use simplified, 1D characterizations of building envelopes and assume a fixed thermal resistance that does not vary over a building’s temperature range. This study describes a detailed 3D computational fluid dynamics model that evaluates the thermal performance of uninsulated wall assemblies. It accounts for conduction through framing, convection, and radiation and allows for material property variations with temperature. Parameters that were varied include ambient outdoor temperature and cavity surface emissivity. The results may serve as input for building energy simulation tools that model the temperature-dependent energy performance of homes with uninsulated walls.


2016 ◽  
Vol 1 (2) ◽  
pp. 1
Author(s):  
Ranjith Dayaratne

For quite some time, architects have been struggling to benefit from the vast body of environment-behaviour research to produce meaningful architecture. Written examples of such efforts are few and far between. In this context, this paper presents an attempt by a student of architecture to employ environment-behaviour research in the design of an elder’s home and discusses the potentials and problems of the approach. It shows that if theory of architecture, design practices and environment-behaviour research could be re-orientate towards and employ the idea of place as a bridging concept,it will facilitate such a link between the environment-behaviour research and design.2398-4295 © 2016. The Authors. Published for AMER ABRA by e-International Publishing House, Ltd., UK.. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians) and cE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning ; Surveying, Universiti Teknologi MARA, Malaysia.Keywords: Architectural design; place; environment-behaviour research; design studio


2020 ◽  
Vol 5 (14) ◽  
pp. 263-278
Author(s):  
Mohd Tajul Izrin Mohd Tajul Hasnan ◽  
Puteri Mayang Bahjah Zaharin

The building sector in Malaysia consumes up to half of the electricity generated in the country. Therefore, there are needs to have a continuous effort to promote microalgae as part of an innovative building envelope system. This paper intends to investigate the potentiality of implementing the microalgae photobioreactor (PBR) in building envelopes in Malaysia. The findings from the precedent studies are synthesised into ten (10) parameters and translated into four (4) design modules. In conclusion, the suggested parameters are crucial in establishing microalgae photobioreactor (PBR) as a suitable prospect for energy efficiency in building envelopes in the tropical climate. Keywords: energy consumption; microalgae; photobioreactor; building envelope. eISSN: 2398-4287© 2020. The Authors. Published for AMER ABRA cE-Bs by e-International Publishing House, Ltd., UK. This is an open access article under the CC BYNC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians) and cE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia. DOI: https://doi.org/10.21834/ebpj.v5i14.2166


2018 ◽  
Vol 3 (8) ◽  
pp. 1-11
Author(s):  
Sharifah Khalizah Syed Othman Thani ◽  
Nik Hanita Nik Mohamad ◽  
Sabrina Idilfitri

This paper discusses a conceptual review of sustainable landscape design approach as mitigating strategies to modify urban temperature in a hot- humid climate.The amelioration of urban temperature through landscape approach can be achieved by incorporating sustainable landscape design practices via the interplay of natural vegetation in the hot-humid tropics. The findings of this paper are hoped to guide the practitioners in landscape architecture, policy makers and urban designers to incorporate sustainable landscape design approach towards improving outdoor thermal comfort; thus providing a better quality of life. Keywords: Landscape design principles; outdoor thermal comfort; urban heat island; hot-humid climate eISSN 2514-751X © 2018. The Authors. Published for AMER ABRA cE-Bs by e-International Publishing House, Ltd., UK. This is an open-access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians) and cE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia. https://doi.org/10.21834/aje-bs.v3i8.274 


Sign in / Sign up

Export Citation Format

Share Document