scholarly journals Anxiolytic and antidepressant effects of tarragon (Artemisia dracunculus L.) hydro-alcoholic extract in male rats exposed to chronic restraint stress

2017 ◽  
Vol 4 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Hajar Khosravi ◽  
Mehdi Rahnema ◽  
Masoumeh Asle-Rousta ◽  
◽  
◽  
...  
2021 ◽  
pp. 096032712110267
Author(s):  
Y Bagheri ◽  
E Fathi ◽  
A Maghoul ◽  
S Moshtagh ◽  
K Mokhtari ◽  
...  

Introduction: Achillea tenuifolia Lam ( AT) has several biological activities and medicinal properties. In this study, we elucidated the impact of the AT on anxiety-related behaviors, reproductive parameters, antioxidant capacity in male rats subjected to chronic restraint stress (CRS). Methods: 35 Wistar rats were divided into five groups: control, CRS-control (received normal saline) and three CRS-treated groups received AT extract (100, 150, and 200 mg/kg body weight) for 21 consequences days. To induce CRS rats, the rats were immobilized for 21 days and received the extract orally. On the last day of treatment, anxiety-related behaviors were assessed through the sucrose preference test (SPT) as well as elevated plus maze (EPM) tests. Corticosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH), testosterone levels were evaluated to determine reproductive capacity. Sperm parameters including the total count, motility, and viability were also analyzed. Weight of body, testis and seminal vesicles was measured as well. Results: The findings revealed that 100, 150, and 200 mg/kg of AT extract had anxiolytic effects in CRS rats, as confirmed by the EPM test and SPT. In addition, AT extract could improve fertile capacity and sperm quality to varying degrees. The level of corticosterone had decreased, whereas the level of LH, FSH and testosterone had increased in CRS-treated rats. Moreover, the reduced level of MDA coincided with an increased rate of antioxidant capacity. Our findings suggest that AT extract could alleviate stress-induced dysfunctions. Conclusion: Overall, these observations would infer that AT extract could improve fertility capacity and behavioral impairment in the stress conditions. Graphical abstract: Assumption pathway describing the probability underlying mechanism of CRS-induced anxiety and reproductive toxicity and protective effect of AT.


Neuropeptides ◽  
2016 ◽  
Vol 60 ◽  
pp. 21-28 ◽  
Author(s):  
Jin Li ◽  
Han-Xia Li ◽  
Xiao-Jing Shou ◽  
Xin-Jie Xu ◽  
Tian-Jia Song ◽  
...  

2021 ◽  
Author(s):  
Tahmineh Mokhtari ◽  
AymanEl-Meghawry El-Kenawy ◽  
Li Hu

Abstract In this study, the effects of triiodothyronine (T3) were evaluated on the NLR family pyrin domain containing 3 (NLRP3) inflammasome complex formation in the rat's hippocampus with restraint stress-induced depressive-like behaviors.Thirty-six Wistar male rats were randomly allocated to following groups: Control, Model, and Model + T3. In the Model or Model+T3 group, a single dose of PBS or T3 was administered into the lateral ventricle. Depressive-like behaviors were induced by chronic restraint stress. The forced swimming (FST), tail suspension (TST), and open field (OFT) tests were used to investigate the depression. The rats were sacrificed, and brain tissues were stored for molecular and pathological evaluations. Chronic stress increased the immobility of rats in the Model group according to FST, TST, and OFT (P < 0.05). T3 significantly improved depressive-like behaviors (P < 0.05). The gene expression and protein level of hippocampal nuclear factor kappa B (NF-κB), NLRP3, apoptosis-associated speck-like protein (ASC), and Caspase-1 significantly increased in the Model group compared to the control group (P < 0.05). The reduced hippocampal levels of NF-κB, NLRP3, ASC, and Caspase-1 were observed in the T3 group compared to the Model group (P < 0.05). The Nissl staining of the CA1 region showed an increased number of dark neurons (P < 0.05) and reduced pyramidal layer thickness (P < 0.05) in the Model group. These histopathological alterations were changed by T3 administration compared to the Model group (P < 0.05). The findings confirmed the therapeutic effects of intraventricularly T3 on depressive-like behaviors induced by restraint stress via surviving pyramidal neurons of the CA1 region and inhibition of NF-κB/NLRP3 inflammasome pathway.


2020 ◽  
Vol 21 (17) ◽  
pp. 6261 ◽  
Author(s):  
Paola Brivio ◽  
Giulia Sbrini ◽  
Giulia Corsini ◽  
Maria Serena Paladini ◽  
Giorgio Racagni ◽  
...  

Depression is a recurrent disorder, with about 50% of patients experiencing relapse. Exposure to stressful events may have an adverse impact on the long-term course of the disorder and may alter the response to a subsequent stressor. Indeed, not all the systems impaired by stress may normalize during symptoms remission, facilitating the relapse to the pathology. Hence, we investigated the long-lasting effects of chronic restraint stress (CRS) and its influence on the modifications induced by the exposure to a second hit on brain-derived neurotrophic factor (BDNF) signaling in the prefrontal cortex (PFC). We exposed adult male Sprague Dawley rats to 4 weeks of CRS, we left them undisturbed for the subsequent 3 weeks, and then we exposed animals to one hour of acute restraint stress (ARS). We found that CRS influenced the release of corticosterone induced by ARS and inhibited the ability of ARS to activate mature BDNF, its receptor Tropomyosin receptor kinase B (TRKB), and their associated intracellular cascades: the TRKB-PI3K-AKT), the MEK-MAPK/ERK, and the Phospholipase C γ (PLCγ) pathways, positively modulated by ARS in non-stressed animals. These results suggest that CRS induces protracted and detrimental consequences that interfere with the ability of PFC to cope with a challenging situation.


Sign in / Sign up

Export Citation Format

Share Document