scholarly journals Атомная и электронная структура реконструкций поверхности (111) в кристаллах ZnSe и CdSe

2018 ◽  
Vol 60 (1) ◽  
pp. 187
Author(s):  
В.Л. Бекенев ◽  
С.М. Зубкова

AbstractThe atomic and electron structure of four variants of polar (111)-(2 × 2) surfaces in ZnSe and CdSe terminated by a cation, namely, the ideal, relaxed, reconstructed, and relaxed after reconstruction surfaces, are calculated for the first time from the first principles. The surface is simulated by a film with a thickness of 12 atomic layers and a vacuum gap of ~16 Å in the layered superlattice approximation. Four fictitious hydrogen atoms with a charge of 0.5 electrons each are added for closing dangling Se bonds on the opposite side of the film. Ab initio calculations are performed using the QUANTUM ESPRESSO software based on the density functional theory. It is shown that relaxation results in splitting of atomic layers. We calculate and analyze the band structures and total and layer-wise densities of electron states for four variants of the surface.

2010 ◽  
Vol 434-435 ◽  
pp. 448-450
Author(s):  
J. Feng ◽  
Wei Pan ◽  
B. Xiao ◽  
Rui Fen Wu ◽  
Chun Lei Wan ◽  
...  

The ground state electronic structure of Gd2SrAl2O7 are calculated using first principles, we found that only the Density functional theory (DFT) + U can correctly describe the Gd2SrAl2O7 as a charge-transfer type insulator. Gd-O and Al-O bonds have strong covalent character and Sr-O is a perfect ionic bond. The band gap of Gd2SrAl2O7is 3.9 eV, and it is opened due the large U correction for 4f orbit.


2020 ◽  
Vol 98 (4) ◽  
pp. 357-363
Author(s):  
Tahsin Özer

Using the density functional theory (DFT) calculations, the structural optimization of the YAl3 compound was performed on the generalized gradient approximation (GGA) with quantum ESPRESSO (QE) software. Elastic constants were calculated after the optimization process. Polycrystalline quantities, such as bulk and shear modulus, Young’s modulus, and Poisson’s ratio, were determined using calculated elastic constants. The anisotropy of the compound was studied in detail. As a result of the calculations made, it was observed that the YAl3 compound exhibited mechanically stable structure and anisotropic behavior. In the ht2-YAl3 phase, the effect of pressure on physical properties was investigated in detail. The obtained results were compared with the existing experimental and other theoretical data.


Open Physics ◽  
2013 ◽  
Vol 11 (3) ◽  
Author(s):  
Gulden Celik ◽  
Suleyman Cabuk

AbstractElectronic and optical properties of Sr(Ti,Zr)O3 crystals in the cubic (Pm-3m) and tetragonal (I4/mcm) phase were calculated by the first-principles calculations using the density functional theory and the local density approximation. The band structure of cubic and tetragonal phases show an indirect band gap at (R-Γ) point and at (M-Γ) point in the Brillouin zone, respectively. The linear photon-energy dependent dielectric functions and some optical properties such as the absorption coefficient, energy-loss function and reflectivity are calculated for both phases. The optical properties of tetragonal phase of Sr(Ti,Zr)O3 were investigated by theoretical methods for the first time. We have also made some comparisons with the available related experimental and theoretical data.


Author(s):  
I. Yu. Sklyadneva ◽  
Rolf Heid ◽  
Pedro Miguel Echenique ◽  
Evgueni Chulkov

Electron-phonon interaction in the Si(111)-supported rectangular √(7 ) ×√3 phases of In is investigated within the density-functional theory and linear-response. For both single-layer and double-layer √(7 ) ×√3 structures, it...


2010 ◽  
Vol 25 (6) ◽  
pp. 1030-1036 ◽  
Author(s):  
Pengxian Lu ◽  
Zigang Shen ◽  
Xing Hu

To investigate the effects of substituting Ag and Sb for Pb on the thermoelectric properties of PbTe, the electronic structures of PbTe and AgPb18SbTe20 were calculated by using the linearized augmented plane wave based on the density-functional theory of the first principles. By comparing the differences in the band structure, the partial density of states (PDOS), the scanning transmission microscope, and the electron density difference for PbTe and AgPb18SbTe20, we explained the reason from the aspect of electronic structures why the thermoelectric properties of AgPb18SbTe20 could be improved significantly. Our results suggest that the excellent thermoelectric properties of AgPb18SbTe20 should be attributed in part to the narrowing of its band gap, band structure anisotropy, the much extrema and large DOS near Fermi energy, as well as the large effective mass of electrons. Moreover, the complex bonding behaviors for which the strong bonds and the weak bonds are coexisted, and the electrovalence and covalence of Pb–Te bond are mixed should also play an important role in the enhancement of the thermoelectric properties of the AgPb18SbTe20.


RSC Advances ◽  
2016 ◽  
Vol 6 (38) ◽  
pp. 31968-31975 ◽  
Author(s):  
Shuai Zhao ◽  
Liguo Gao ◽  
Chunfeng Lan ◽  
Shyam S. Pandey ◽  
Shuzi Hayase ◽  
...  

In this work, we present a detailed first-principles investigation on the stoichiometric and oxygen-deficient structures of double perovskites, Sr2BMoO6 (B = Mg, Co and Ni), using the density functional theory (DFT) method.


2009 ◽  
Vol 64 (5-6) ◽  
pp. 399-404 ◽  
Author(s):  
Zi-Jiang Liu ◽  
Xiao-Ming Tan ◽  
Yuan Guo ◽  
Xiao-Ping Zheng ◽  
Wen-Zhao Wu

The thermodynamic properties of tetragonal CaSiO3 perovskite are predicted at high pressures and temperatures using the Debye model for the first time. This model combines the ab initio calculations within local density approximation using pseudopotentials and a plane wave basis in the framework of density functional theory, and it takes into account the phononic effects within the quasi-harmonic approximation. It is found that the calculated equation of state is in excellent agreement with the observed values at ambient condition. Based on the first-principles study and the Debye model, the thermal properties including the Debye temperature, the heat capacity, the thermal expansion and the entropy are obtained in the whole pressure range from 0 to 150 GPa and temperature range from 0 to 2000 K.


2021 ◽  
Vol 12 ◽  
pp. 1101-1114
Author(s):  
Muhammad Atif Sattar ◽  
Najwa Al Bouzieh ◽  
Maamar Benkraouda ◽  
Noureddine Amrane

Tin selenide (SnSe) has thermoelectric (TE) and photovoltaic (PV) applications due to its exceptional advantages, such as the remarkable figure of merit (ZT ≈ 2.6 at 923 K) and excellent optoelectronic properties. In addition, SnSe is nontoxic, inexpensive, and relatively abundant. These aspects make SnSe of great practical importance for the next generation of thermoelectric devices. Here, we report structural, optoelectronic, thermodynamic, and thermoelectric properties of the recently experimentally identified binary phase of tin monoselenide (π-SnSe) by using the density functional theory (DFT). Our DFT calculations reveal that π-SnSe features an optical bandgap of 1.41 eV and has an exceptionally large lattice constant (12.2 Å, P213). We report several thermodynamic, optical, and thermoelectric properties of this π-SnSe phase for the first time. Our finding shows that the π-SnSe alloy is exceptionally promising for the next generation of photovoltaic and thermoelectric devices at room and high temperatures.


Author(s):  
А.А. Басалаев ◽  
А.Г. Бузыкин ◽  
В.В. Кузьмичев ◽  
М.Н. Панов ◽  
А.В. Петров ◽  
...  

Radiation damage to isolated glycyl-leucine (C8H16N2O3) molecules caused by interaction with He2+ ions was studied. For the first time, the relative cross sections of the main processes of changes in the charge state of the collision partners and the relative cross sections of the fragmentation processes of singly and doubly charged molecular ions formed during single collisions of glycyl-leucine molecules with ions have been obtained. The optimized geometry of the molecule and singly charged glycyl-leucine ion was calculated using the density functional theory (DFT).


2019 ◽  
Vol 27 (4) ◽  
pp. 420-430
Author(s):  
D. P. Krylov

Zircon β-factors have been calibrated against temperature for isotopic substitutions of 18O/16O and 30Si/28Si. Calculations were performed using the density functional theory (DFT) with the “frozen phonon” approach. The deduced geometric parameters of the zircon unit cell, and the phonon frequencies calculated, agree well with the experimental data. The results are expressed by the cubic polynomials on x = 106/T(K)2: 1000lnβzrn(18O/16O) = 9.83055x – 0.19499x2 + 0.00388x3;  1000lnβzrn(30Si/28Si) = 7.89907x – 0.17978x2 + 0.00377x3. The expressions deduced can be utilized to construct geothermometers if combined with β-factors of coexisting phases. New calibrations of quartz-zircon are given. The new values of 1000lnβzrn and the estimated isotope fractionation factors between quartz and zircon (1000lnβqtz–1000lnβzrn) deviate considerably from previously used experimental, empirical, and semi-empirical calibration of the isotopic equilibrium.


Sign in / Sign up

Export Citation Format

Share Document