scholarly journals Диэлектрические и сегнетоэлектрические свойства тонких гетероэпитаксиальных пленок SBN-50

2021 ◽  
Vol 63 (6) ◽  
pp. 776
Author(s):  
А.В. Павленко ◽  
Д.А. Киселев ◽  
Я.Ю. Матяш

The phase transformations and ferroelectric characteristics of thin heteroepitaxial barium-strontium niobate SBN-50 films grown by RF cathode sputtering in an oxygen atmosphere were studied using dielectric spectroscopy and scanning probe microscopy (in the modes of force microscopy of the piezoresponse and Kelvin modes). It is shown that the films are characterized by a low surface roughness, an average size of ferroelectric domains of ~ 100 nm, and spontaneous polarization directed from the substrate to the film surface. Differences in the magnitude of the surface potential signal and its relaxation for the regions polarized at +10 V and –10 V were established. The nature of the change in the dielectric parameters in the temperature range T = 275–500 K indicates that the material belongs to ferroelectric relaxors. The reasons for the established regularities are discussed.

COSMOS ◽  
2007 ◽  
Vol 03 (01) ◽  
pp. 1-21 ◽  
Author(s):  
XIAN NING XIE ◽  
HONG JING CHUNG ◽  
ANDREW THYE SHEN WEE

Nanotechnology is vital to the fabrication of integrated circuits, memory devices, display units, biochips and biosensors. Scanning probe microscope (SPM) has emerged to be a unique tool for materials structuring and patterning with atomic and molecular resolution. SPM includes scanning tunneling microscopy (STM) and atomic force microscopy (AFM). In this chapter, we selectively discuss the atomic and molecular manipulation capabilities of STM nanolithography. As for AFM nanolithography, we focus on those nanopatterning techniques involving water and/or air when operated in ambient. The typical methods, mechanisms and applications of selected SPM nanolithographic techniques in nanoscale structuring and fabrication are reviewed.


1993 ◽  
Vol 318 ◽  
Author(s):  
James D. Kiely ◽  
Dawn A. Bonnell

ABSTRACTScanning Tunneling and Atomic Force Microscopy were used to characterize the topography of fractured Au /sapphire interfaces. Variance analysis which quantifies surface morphology was developed and applied to the characterization of the metal fracture surface of the metal/ceramic system. Fracture surface features related to plasticity were quantified and correlated to the fracture energy and energy release rate.


2012 ◽  
Vol 3 ◽  
pp. 722-730 ◽  
Author(s):  
César Moreno ◽  
Carmen Munuera ◽  
Xavier Obradors ◽  
Carmen Ocal

We report on the use of scanning force microscopy as a versatile tool for the electrical characterization of nanoscale memristors fabricated on ultrathin La0.7Sr0.3MnO3 (LSMO) films. Combining conventional conductive imaging and nanoscale lithography, reversible switching between low-resistive (ON) and high-resistive (OFF) states was locally achieved by applying voltages within the range of a few volts. Retention times of several months were tested for both ON and OFF states. Spectroscopy modes were used to investigate the I–V characteristics of the different resistive states. This permitted the correlation of device rectification (reset) with the voltage employed to induce each particular state. Analytical simulations by using a nonlinear dopant drift within a memristor device explain the experimental I–V bipolar cycles.


1996 ◽  
Vol 461 ◽  
Author(s):  
Ph. Leclère ◽  
J. M. Yu ◽  
R. Lazzaroni ◽  
Ph. Dubois ◽  
R. JéRôme ◽  
...  

ABSTRACTAtomic Force Microscopy with Phase Detection Imaging is used to study the surface microdomain morphology of thick (i.e., ca. 2 mm) films of triblock copolymers, such as polymethylmethacrylate - block - polybutadiene - block - polymethylmethacrylate copolymers prepared by a well-taylored two-step sequential copolymerization promoted by a 1,3-diisopropenylbenzene based difunctional anionie initiator. By means of this new scanning probe microscopy technique, it is shown that the surface exhibits a segregated microphase structure, corresponding to the different types of components predicted theoretically by thermodynamic processes. We investigate the relationships between the size and characteristics of the microdomain structure as a function of the molecular parameters of the constituent polymers. Our data illustrate the interest of Phase Detection Imaging in the elucidation of surface phase separation in block copolymers.


1999 ◽  
Vol 123 (1) ◽  
pp. 35-43 ◽  
Author(s):  
D. Croft ◽  
G. Shed ◽  
S. Devasia

This article studies ultra-high-precision positioning with piezoactuators and illustrates the results with an example Scanning Probe Microscopy (SPM) application. Loss of positioning precision in piezoactuators occurs (1) due to hysteresis during long range applications, (2) due to creep effects when positioning is needed over extended periods of time, and (3) due to induced vibrations during high-speed positioning. This loss in precision restricts the use of piezoactuators in high-speed positioning applications like SPM-based nanofabrication, and ultra-high-precision optical systems. An integrated inversion-based approach is presented in this article to compensate for all three adverse affects—creep, hysteresis, and vibrations. The method is applied to an Atomic Force Microscope (AFM) and experimental results are presented that demonstrate substantial improvements in positioning precision and operating speed.


2006 ◽  
Vol 59 (6) ◽  
pp. 359 ◽  
Author(s):  
Pall Thordarson ◽  
Rob Atkin ◽  
Wouter H. J. Kalle ◽  
Gregory G. Warr ◽  
Filip Braet

Scanning probe microscopy (SPM) techniques, including atomic force microscopy (AFM) and scanning tunnelling microscopy (STM), have revolutionized our understanding of molecule–surface interactions. The high resolution and versatility of SPM techniques have helped elucidate the morphology of adsorbed surfactant layers, facilitated the study of electronically conductive single molecules and biomolecules connected to metal substrates, and allowed direct observation of real-time processes such as in situ DNA hybridization and drug–cell interactions. These examples illustrate the power that SPM possesses to study (bio)molecules on surfaces and will be discussed in depth in this review.


2010 ◽  
Vol 645-648 ◽  
pp. 767-770 ◽  
Author(s):  
Sergey P. Lebedev ◽  
P.A. Dement’ev ◽  
Alexander A. Lebedev ◽  
V.N. Petrov ◽  
Alexander N. Titkov

Atomic-force microscopy and scanning tunnel electron microscopy have been used to study the surface of single-crystal 6H-SiC (0001) substrates subjected to step-by-step high-temperature annealing in vacuum. An annealing procedure leading to surface structuring by atomically smooth steps with heights of 0.75 and 1.5 nm has been found. It is suggested to use the structured surfaces as test objects for z-calibration of scanning probe microscopes.


2001 ◽  
Vol 9 (1) ◽  
pp. 8-15 ◽  
Author(s):  
V. V. Tsukruk ◽  
V. V. Gorbunov

Highly localized probing of surface nanomechanical properties with a submicron resolution can be accomplished with scanning probe microscopy (SPM). The SPM ability to probe local surface topography in conjunction with mechanical, adhesive, friction, thermal, magnetic, and electric properties is unique.1 However, the quantitative probing of the nanomechanical materials properties is still a challenge and only a few examples have been published to date.In this note, we briefly review the latest developments in the nanomechanical probing of compliant materials (predominantly polymers). We solely focus our analysis of SPM-based approach in a so-called static force spectroscopy (SFS) mode.


2018 ◽  
Vol 60 (2) ◽  
pp. 255
Author(s):  
А.Е. Почтенный ◽  
А.Н. Лаппо ◽  
И.П. Ильюшонок

AbstractSome results of studying the direct-current (DC) conductivity of perylenetetracarboxylic acid dimethylimide films by cyclic oxygen thermal desorption are presented. The microscopic parameters of hopping electron transport over localized impurity and intrinsic states were determined. The bandgap width and the sign of major current carriers were determined by scanning probe microscopy methods (atomic force microscopy, scanning probe spectroscopy, and photoassisted Kelvin probe force microscopy). The possibility of the application of photoassisted scanning tunneling microscopy for the nanoscale phase analysis of photoconductive films is discussed.


Sign in / Sign up

Export Citation Format

Share Document