scholarly journals Влияние ультрафиолетового облучения на деформационные свойства синдиотактического 1,2-полибутадиена: роль окисления

2019 ◽  
Vol 89 (4) ◽  
pp. 518
Author(s):  
Ю.А. Лебедев ◽  
Р.Р. Кинзябулатов ◽  
В.В. Астанин ◽  
Д.В. Гундеров

AbstractWe studied the impact of ultraviolet (UV) irradiation on stress–strain characteristics, derived from uniaxial stretching measurements, and the molecular structure (photoinduced changes) of syndiotactic 1,2-polybutadien, a polymer with thermoplastic elastomer properties. Uniaxial stretching stress–strain curves are recorded for samples subjected to UV irradiation for different times and the effects UV irradiation has on the stress–strain behavior of polymers are analyzed. Long UV irradiation is found to markedly increase the hardening of polymers: Young’s modulus and yield strength increase, while the fracture strain decreases. At the same time, we observe a sharp increase in polymer molecular weight and its considerable oxidation that particularly involves surface layers. The mechanisms of cross-linking between macromolecules and their simultaneous oxidation induced by exposure to UV light are discussed along with the role these processes play in evolution of the physical mechanical properties under UV irradiation.

2008 ◽  
Vol 22 (31n32) ◽  
pp. 5590-5595 ◽  
Author(s):  
TOSHIMASA NAGAI ◽  
TAKESHI IWAMOTO ◽  
TOSHIYUKI SAWA ◽  
YASUHISA SEKIGUCHI ◽  
HIDEAKI KURAMOTO ◽  
...  

The impact deformation behavior and the strain sensitivity of structural adhesives are experimentally investigated by using INSTRON-type universal testing machine and split Hopkinson pressure bar apparatus. The experimental results show some fundamental features of the typical compressive stress-strain behavior of polymers with linear elastic and nonlinear inelastic deformation stages. In the inelastic deformation, the peak stress, and the strain-softening stage after the peak can be observed at the entire range of strain-rate from 10-4 to 103 /s. In addition, it can be found that the relationship between the peak stress at the strain-softening stage and strain-rate for a semi-logarithm curve is linear in a range of low strain rate, however, that becomes nonlinear at high strain rate. Finally, some constitutive models try to be applied for to describe the stress-strain behavior of structural adhesives.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1373
Author(s):  
Albrecht Gilka-Bötzow ◽  
Paula Folino ◽  
Andreas Maier ◽  
Eduardus A. B. Koenders ◽  
Antonio Caggiano

This work reports a detailed experimental study that is aimed at investigating the failure mechanisms of highly porous cementitious foams used as heat insulation under triaxial stress states. The designed target dry density of the considered foam mixture was 180 kg/m3 by setting the water-to-cement ratio of the considered cement paste to 0.4. The mechanical experiments were accompanied by thermal tests to observe the effect that specific air void structures have on the resulting insulation properties and by micro-to-meso geometric studies to identify and classify the inner structure of the considered mineralized foams. Unconfined compressive strengths were performed first, obtaining peak stresses of 0.252, 0.283, 0.223, and 0.251 (results in MPa), corresponding to peak strains of 39.0, 28.6, 45.3, and 20.6 (in ×10−3 mm/mm), respectively. Moreover, three triaxial confinement levels of 33%, 66%, and 90% of the mean uniaxial compressive strength (fc) were adopted. The results showed that a 33% confinement may cause a strength increase and an almost perfect elastic–plastic stress–strain behavior. However, higher levels of confinements (i.e., 66% and 90%) produced very unstable behaviors in terms of the final strength and stress–strain response.


Author(s):  
Garret Meijer ◽  
Trent Kaiser

Pipe collapse limits are controlled by circumferential compressive material response. In addition to yield strength and elastic modulus, elastic-plastic transition and plastic collapse performance of thick-wall pipes also depends on the character of yielding and post-yield hardening. Accurate characterization of all these properties is necessary to obtain a reliable estimate of collapse load. Common standardized material test methods provide convenient means to acquire basic mechanical properties (i.e., yield strength, elastic modulus and elongation) under laboratory conditions (i.e., room temperature and relatively rapid loading). However, these test methods include specimen preparation, such as pipe-wall straightening, and rapid strain rates that are known to impact material response, particularly in the yield transition and post-yield regimes that are important to elastic-plastic collapse. Therefore, these common laboratory techniques are useful for providing an index of material properties, but their simplified methodologies can have a significant impact on the accuracy of collapse performance estimates. This paper describes a circumferential compressive material testing technique, developed to complement strain-based design in the energy industry, used to demonstrate differences in pipe material response measured from circumferential compressive tests and standard axial tensile tests. This technique avoids straightening the pipe wall by plastic deformation that leads to artificial rounding of the measured stress-strain yield behavior. Strain controlled loading is used to reveal yield behaviors that may be impacted by changing strain rates under stroke and load control testing. Accurate circumferential compressive material characterization improves the identification of yield and anisotropic behaviors (tension-compression and axial-circumferential) that arise from material processing, pipe manufacturing and subsequent loading. The impact of the material response is illustrated in a numerical pipe collapse simulation that directly incorporates the measured stress-strain behavior. The impact of yield strength, stress-strain yield shape and post-yield hardening are explored. Using the measured stress-strain behavior and collapse simulation results, the sensitivity of collapse load predictions to material behavior is discussed and the requirement for accurate circumferential compressive and in-situ material characterization is demonstrated.


2012 ◽  
Vol 717-720 ◽  
pp. 765-768 ◽  
Author(s):  
Daisuke Ikeguchi ◽  
Takashi Kirino ◽  
Shuhei Mitani ◽  
Yuki Nakano ◽  
Takashi Nakamura ◽  
...  

The impact of ultraviolet (UV) light irradiation on thermally grown SiO2/4H-SiC structures was investigated by characterizing the 4H-SiC metal-oxide-semiconductor (MOS) capacitors fabricated with and without UV irradiation onto the oxide layers. The UV irradiation was found to significantly increase a hysteresis in capacitance-voltage (C-V) characteristics and cause a positive flatband voltage (VFB) shift, suggesting the generation of oxide charges and traps. Since the values of C-V hysteresis and VFB shift depend on the UV irradiation time, the electrical defects were considered to be induced during UV irradiation. In contrast, UV irradiation caused no marked change for the reference Si-MOS capacitors, indicating that the generation of UV-induced electrical defects was an intrinsic property of thermally grown SiO2/SiC structures. A detailed characterization of SiC-MOS capacitors with terraced SiO2 layers revealed that the UV-induced defects were located near the SiO2/SiC interface. The interfacial fixed charge density (QOX) was estimated to be 1.7×1012 cm-2 for the sample with UV irradiation, while that of the sample without UV irradiation was 1.0×1012 cm-2. Also, a slight increase was found in interface state density (Dit) due to UV irradiation. These results imply that the UV-induced defect generation correlates with residual carbon impurities at the SiO2/SiC interface.


Author(s):  
L. Marks ◽  
H. Lu ◽  
T. Chambers ◽  
S. Finkenstaedt-Quinn ◽  
R. S. Goldman

AbstractWe examine the impact of writing-to-learn (WTL) on promoting conceptual understanding of introductory materials science and engineering, including crystal structures, stress–strain behavior, phase diagrams, and corrosion. We use an analysis of writing products in comparison with pre/post concept-inventory-style assessments. For all topics, statistically significant improvements between draft and revision scores are apparent. For the stress–strain and phase diagram WTL assignments that require synthesis of qualitative data into quantitative formats, while emphasizing microstructure-properties correlations, the highest WTL effect sizes and medium-to-high gains on corresponding assessments are observed. We present these findings and suggest strategies for future WTL design and implementation. Graphic abstract


2012 ◽  
Vol 1 (3) ◽  
pp. 32-38
Author(s):  
Tantary M.A ◽  
◽  
Upadhyay A ◽  
Prasad J ◽  
◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 833
Author(s):  
Edina Preklet ◽  
László Tolvaj ◽  
Eszter Visi-Rajczi ◽  
Tamás Hofmann

The goal of this research was the systematic study and comparison of the divided individual effects of UV light irradiation and water leaching during artificial weathering. Spruce (Picea abies Karst.) and Scots pine (Pinus sylvestris L.) samples were irradiated by ultraviolet (UV) light. Another sequence of samples was treated with the combination of UV irradiation and water leaching. The total extent of UV treatment was 20 days for both series of samples. Time relation of UV irradiation and water leaching was 2:1. The chemical changes were observed by FTIR spectroscopy. The difference spectrum was used for determination of the chemical changes. Degradation of lignin was greater for the leached samples than for the pure UV treated samples. Scots pine suffered greater lignin degradation than spruce, and produced higher absorption increase on the absorption region of unconjugated carbonyls. The unconjugated carbonyl groups were the most responsive chemical elements to leaching. Spruce was more susceptible to leaching of unconjugated carbonyl groups than Scots pine. Two absorption bands of unconjugated carbonyl groups at 1706 and 1764 cm−1 wavenumbers were produced by photodegradation. The absorption band at 1764 cm−1 was more sensitive to water leaching than the band at 1706 cm−1.


Author(s):  
Mariko Nakata ◽  
Masayuki Shimoda ◽  
Shinya Yamamoto

Abstract Irradiation with ultraviolet (UV) light on the cortical surface can induce a focal brain lesion (UV lesion) in rodents. In the present study, we investigated the process of establishing a UV lesion. Rats underwent UV irradiation (365 nm wavelength, 2.0 mWh) over the dura, and time-dependent changes in the cortical tissue were analyzed histologically. We found that the majority of neurons in the lesion started to degenerate within 24 hours and the rest disappeared within 5 days after irradiation. UV-induced neuronal degeneration progressed in a layer-dependent manner. Moreover, UV-induced terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positivity and heme oxygenase-1 (HO-1) immunoreactivity were also detected. These findings suggest that UV irradiation in the brain can induce gradual neural degeneration and oxidative stress. Importantly, UV vulnerability may vary among cortical layers. UV-induced cell death may be due to apoptosis; however, there remains a possibility that UV-irradiated cells were degenerated via processes other than apoptosis. The UV lesion technique will not only assist in investigating brain function at a targeted site but may also serve as a pathophysiological model of focal brain injury and/or neurodegenerative disorders.


Sign in / Sign up

Export Citation Format

Share Document