scholarly journals Влияние числа Рейнольдса на распределение кинетической энергии турбулентных пульсаций по сечению плоского канала

2019 ◽  
Vol 89 (6) ◽  
pp. 844
Author(s):  
Ю.Г. Чесноков

AbstractNumerical simulation data for 2D channel flow obtained by different authors have been used to study the influence of the Reynolds number on the distribution of pulsation kinetic energy over a flat channel’s cross section.

2009 ◽  
Vol 23 (03) ◽  
pp. 509-512 ◽  
Author(s):  
SUHUA SHEN ◽  
JIANZHONG LIN

To explore the rheological property in turbulent channel flow of fiber suspensions, the equation of probability distribution function for mean fiber orientation and the Reynolds averaged Navier-Stokes equation with the term of additional stress resulted from fibers were solved with numerical methods to get the distributions of the mean velocity and turbulent kinetic energy. The simulation results show that the effect of fibers on turbulent channel flow is equivalent to an additional viscosity. The turbulent velocity profiles of fiber suspension become gradually sharper by increasing the fiber concentration and/or decreasing the Reynolds number. The turbulent kinetic energy will increase with increasing Reynolds number and fiber concentration.


2015 ◽  
Vol 137 (12) ◽  
Author(s):  
Adnan Qayoum ◽  
P. K. Panigrahi

This investigation reports the combined effect of synthetic jet and a surface-mounted rib on heat transfer in a square cross-section channel flow. The rib height to hydraulic diameter ratio is equal to 0.1625. The Reynolds number of the channel has been set equal to 5500. The synthetic jet actuator has been operated at different actuation voltages with different amplitude modulation frequencies. At actuation voltage of 55 V, the maximum overall heat transfer is enhanced by 132.6% compared with smooth duct flow.


1993 ◽  
Vol 250 ◽  
pp. 509-529 ◽  
Author(s):  
W. Rodi ◽  
N. N. Mansour

The constant Cμ and the near-wall damping function fμ in the eddy-viscosity relation of the k–ε model are evaluated from direct numerical simulation (DNS) data for developed channel and boundary-layer flow, each at two Reynolds numbers. Various existing fμ model functions are compared with the DNS data, and a new function is fitted to the high-Reynolds-number channel flow data. The ε-budget is computed for the fully developed channel flow. The relative magnitude of the terms in the ε-equation is analysed with the aid of scaling arguments, and the parameter governing this magnitude is established. Models for the sum of all source and sink terms in the ε-equation are tested against the DNS data, and an improved model is proposed.


2019 ◽  
Vol 868 ◽  
pp. 316-340 ◽  
Author(s):  
Zhaosheng Yu ◽  
Peng Wang ◽  
Jianzhong Lin ◽  
Howard H. Hu

In this paper, the lateral migration of a neutrally buoyant spherical particle in the pressure-driven rectangular channel flow of an Oldroyd-B fluid is numerically investigated with a fictitious domain method. The aspect ratio of the channel cross-section considered is 1 and 2, respectively. The particle lateral motion trajectories are shown for the bulk Reynolds number ranging from 1 to 100, the ratio of the solvent viscosity to the total viscosity being 0.5, and a Weissenberg number up to 1.5. Our results indicate that the lateral equilibrium positions located on the cross-section midline, diagonal line, corner and channel centreline occur successively as the fluid elasticity is increased, for particle migration in square channel flow with finite fluid inertia. The transition of the equilibrium position depends strongly on the elasticity number (the ratio of the Weissenberg number to the Reynolds number) and weakly on the Reynolds number. The diagonal-line equilibrium position occurs at an elasticity number ranging from roughly 0.001 to 0.02, and can coexist with the midline and corner equilibrium positions. When the fluid inertia is negligibly small, particles migrate towards the channel centreline, or the closest corner, depending on their initial positions and the Weissenberg number, and the corner attractive area first increases and then decreases as the Weissenberg number increases. For particle migration in a rectangular channel with an aspect ratio of 2, the transition of the equilibrium position from the midline, ‘diagonal line’ (the line where two lateral shear rates are equal to each other), off-centre long midline and channel centreline takes place as the Weissenberg number increases at moderate Reynolds numbers. An off-centre equilibrium position on the long midline is observed for a large blockage ratio of 0.3 (i.e. the ratio of the particle diameter to the channel height is 0.3) at a low Reynolds number. This off-centre migration is driven by shear forces, unlike the elasticity-induced rapid inward migration, which is driven by the normal force (pressure or first normal stress difference).


Author(s):  
Frank T. Smith ◽  
Edward R. Johnson

A body of finite size is moving freely inside, and interacting with, a channel flow. The description of this unsteady interaction for a comparatively dense thin body moving slowly relative to flow at medium-to-high Reynolds number shows that an inviscid core problem with vorticity determines much, but not all, of the dominant response. It is found that the lift induced on a body of length comparable to the channel width leads to differences in flow direction upstream and downstream on the body scale which are smoothed out axially over a longer viscous length scale; the latter directly affects the change in flow directions. The change is such that in any symmetric incident flow the ratio of slopes is found to be cos ⁡ ( π / 7 ) , i.e. approximately 0.900969, independently of Reynolds number, wall shear stresses and velocity profile. The two axial scales determine the evolution of the body and the flow, always yielding instability. This unusual evolution and linear or nonlinear instability mechanism arise outside the conventional range of flow instability and are influenced substantially by the lateral positioning, length and axial velocity of the body.


2021 ◽  
Vol 11 (9) ◽  
pp. 3869
Author(s):  
Chen Niu ◽  
Yongwei Liu ◽  
Dejiang Shang ◽  
Chao Zhang

Superhydrophobic surface is a promising technology, but the effect of superhydrophobic surface on flow noise is still unclear. Therefore, we used alternating free-slip and no-slip boundary conditions to study the flow noise of superhydrophobic channel flows with streamwise strips. The numerical calculations of the flow and the sound field have been carried out by the methods of large eddy simulation (LES) and Lighthill analogy, respectively. Under a constant pressure gradient (CPG) condition, the average Reynolds number and the friction Reynolds number are approximately set to 4200 and 180, respectively. The influence on noise of different gas fractions (GF) and strip number in a spanwise period on channel flow have been studied. Our results show that the superhydrophobic surface has noise reduction effect in some cases. Under CPG conditions, the increase in GF increases the bulk velocity and weakens the noise reduction effect. Otherwise, the increase in strip number enhances the lateral energy exchange of the superhydrophobic surface, and results in more transverse vortices and attenuates the noise reduction effect. In our results, the best noise reduction effect is obtained as 10.7 dB under the scenario of the strip number is 4 and GF is 0.5. The best drag reduction effect is 32%, and the result is obtained under the scenario of GF is 0.8 and strip number is 1. In summary, the choice of GF and the number of strips is comprehensively considered to guarantee the performance of drag reduction and noise reduction in this work.


Sign in / Sign up

Export Citation Format

Share Document