scholarly journals Movement of a finite body in channel flow

Author(s):  
Frank T. Smith ◽  
Edward R. Johnson

A body of finite size is moving freely inside, and interacting with, a channel flow. The description of this unsteady interaction for a comparatively dense thin body moving slowly relative to flow at medium-to-high Reynolds number shows that an inviscid core problem with vorticity determines much, but not all, of the dominant response. It is found that the lift induced on a body of length comparable to the channel width leads to differences in flow direction upstream and downstream on the body scale which are smoothed out axially over a longer viscous length scale; the latter directly affects the change in flow directions. The change is such that in any symmetric incident flow the ratio of slopes is found to be cos ⁡ ( π / 7 ) , i.e. approximately 0.900969, independently of Reynolds number, wall shear stresses and velocity profile. The two axial scales determine the evolution of the body and the flow, always yielding instability. This unusual evolution and linear or nonlinear instability mechanism arise outside the conventional range of flow instability and are influenced substantially by the lateral positioning, length and axial velocity of the body.

1989 ◽  
Vol 202 ◽  
pp. 543-557 ◽  
Author(s):  
P. Henrik Alfredsson ◽  
Håkan Persson

A flow visualization study of instabilities caused by Coriolis effects in plane rotating Poiseuille flow has been carried out. The primary instability takes the form of regularly spaced roll cells aligned in the flow direction. They may occur at Reynolds numbers as low as 100, i.e. almost two orders of magnitude lower than the critical Reynolds number for Tollmien-Schlichting waves in channel flow without rotation. The development of such roll cells was studied as a function of both the Reynolds number and the rotation rate and their properties compared with results from linear spatial stability theory. The theoretically obtained most unstable wavenumber agrees fairly well with the experimentally observed value. At high Reynolds number a secondary instability sets in, which is seen as a twisting of the roll cells. A wavytype disturbance is also seen at this stage which, if the rotational speed is increased, develops into large-scale ‘turbulence’ containing imbedded roll cells.


PAMM ◽  
2015 ◽  
Vol 15 (1) ◽  
pp. 489-490
Author(s):  
Davide Modesti ◽  
Matteo Bernardini ◽  
Sergio Pirozzoli

2015 ◽  
Vol 774 ◽  
pp. 395-415 ◽  
Author(s):  
Myoungkyu Lee ◽  
Robert D. Moser

A direct numerical simulation of incompressible channel flow at a friction Reynolds number ($\mathit{Re}_{{\it\tau}}$) of 5186 has been performed, and the flow exhibits a number of the characteristics of high-Reynolds-number wall-bounded turbulent flows. For example, a region where the mean velocity has a logarithmic variation is observed, with von Kármán constant ${\it\kappa}=0.384\pm 0.004$. There is also a logarithmic dependence of the variance of the spanwise velocity component, though not the streamwise component. A distinct separation of scales exists between the large outer-layer structures and small inner-layer structures. At intermediate distances from the wall, the one-dimensional spectrum of the streamwise velocity fluctuation in both the streamwise and spanwise directions exhibits $k^{-1}$ dependence over a short range in wavenumber $(k)$. Further, consistent with previous experimental observations, when these spectra are multiplied by $k$ (premultiplied spectra), they have a bimodal structure with local peaks located at wavenumbers on either side of the $k^{-1}$ range.


1995 ◽  
Vol 2 (1) ◽  
pp. 23-32
Author(s):  
Tsutomu adachi

In this paper, first, the principle, structures, operations, and performances of the cryogenic wind tunnel are described. By changing the pressure, temperature and velocity of gas a high Reynolds-number flow(5×104<Re<107)can be obtained. From the research results, a high Reynolds-number flow with comparatively low power, LN consumptions was attained. It was with Mach-number independent of each other, o show some examples of high Reynolds-number flow, the effects of surface roughness and grooves on the surface of a cylinder on the flow are measured using models with various values of roughness and size. A model test of an airship was also conducted. With the high Reynolds-number flow, the thickness of the boundary layer becomes thinner. Then the surface conditions of a body have great effect on the flow phenomena and on the drag of the body. Some attempts to reduce the drag of the body were shown.


2016 ◽  
Vol 788 ◽  
pp. 614-639 ◽  
Author(s):  
Sergio Pirozzoli ◽  
Matteo Bernardini ◽  
Paolo Orlandi

We study passive scalars in turbulent plane channels at computationally high Reynolds number, thus allowing us to observe previously unnoticed effects. The mean scalar profiles are found to obey a generalized logarithmic law which includes a linear correction term in the whole lower half-channel, and they follow a universal parabolic defect profile in the core region. This is consistent with recent findings regarding the mean velocity profiles in channel flow. The scalar variances also exhibit a near universal parabolic distribution in the core flow and hints of a sizeable log layer, unlike the velocity variances. The energy spectra highlight the formation of large scalar-bearing eddies with size proportional to the channel height which are caused by a local production excess over dissipation, and which are clearly visible in the flow visualizations. Close correspondence of the momentum and scalar eddies is observed, with the main difference being that the latter tend to form sharper gradients, which translates into higher scalar dissipation. Another notable Reynolds number effect is the decreased correlation of the passive scalar field with the vertical velocity field, which is traced to the reduced effectiveness of ejection events.


2005 ◽  
Vol 127 (5) ◽  
pp. 907-918 ◽  
Author(s):  
Siniša Krajnović ◽  
Lars Davidson

Large eddy simulations (LES) were made of flows around a generic ground vehicle with sharp edges at the rear end (an Ahmed body with a 25° angle of the rear slanted surface). Separation of the flow at the rear results in large regions with recirculating flow. As the separation is determined by the geometry, the Reynolds number effects are minimized. Resolution requirements of this recirculating flow are smaller than those in LES of wall attached flows. These two consequences of the geometry of the body are used to predict the experimental flow at relatively high Reynolds number. Recommendations are presented for the preparation and realization of LES for vehicle flows. Comparison of the LES results with the experimental data shows good agreement.


2020 ◽  
Vol 14 (2) ◽  
pp. 6663-6678
Author(s):  
Akshay Sherikar ◽  
P. J. Disimile

The objective of this study is to expound on the deliverables of a steady-state RANS (Reynolds Averaged Navier Stokes) simulation in one of the simplest flows, Couette flow, at a very high Reynolds number. To that end, a process to perform better grid sensitivity testing is introduced. Three two-equation turbulence models ( , , and ) are compared against each other as well as pitted against formal literature on the subject and core flow velocities, slopes, wall-bounded velocities, shear stresses and kinetic energies are analyzed.  applied with enhanced wall functions is consistently found to be in better agreement with previous studies. Finally, plane turbulent Couette flow at  51,099, the range at which it has not been studied experimentally, numerically or analytically in former studies, is simulated. The results are found to be consistent with the trends asserted by literature and preliminary computations of this study.


Author(s):  
Kenneth J. Schaudt ◽  
Christopher Wajnikonis ◽  
Don Spencer ◽  
Jie Xu ◽  
Steve Leverette ◽  
...  

A new form of Vortex-Induced Vibration (VIV) suppression device, the AIMS Dual-fin Flow Splitter (ADFS), has been developed, tested and benchmarked against bare-pipe, 5d and 15d pitch strakes and conventional teardrop fairings. Testing included high-mode number in-situ tests as well as low Reynolds number (&lt;300,000) and high Reynolds number (&lt;1.9 million) forced and free tank tests. Finally, wind tunnel tests and in-water Particle Image Velocimetry (PIV) were used to test the hypothesis that the dual-fin flow splitter replaces the oscillating wake of a blunt body with a stable, attached circulation behind the body and between the fins. Such a replacement was hypothesized to result in reduced drag, and the elimination of almost all VIV. The paper will describe the testing program and results, and present the incorporation of the test results into riser models.


Sign in / Sign up

Export Citation Format

Share Document