scholarly journals Vibrational, Thermal, and Physical Characterizations of Some Zinc Niobo Tellurite Glasses Doped with Rare Earth (Eu, Dy)-=SUP=-*-=/SUP=-

2021 ◽  
Vol 129 (4) ◽  
pp. 527
Author(s):  
Afrash Ejigu A ◽  
K.P. Ramesh ◽  
Gajanan Honnavar

In this communication, we report physical and thermal properties along with Raman spectroscopic investigations on Zinc Niobo Tellurite glass systems doped with Eu2O3 and Dy2O3 at the expense of TeO2. The glasses have been synthesized by the melt quenching technique. Physical parameters like density, molar volume, packing density were estimated. The density of the un-doped glasses increases with increasing mol% of the modifier (ZnO) whereas the glass transition temperature (Tg) decreases. We have observed an increase in the density of the base glass systems which are doped with rare earth (RE) dopants. The packing density of the un-doped glasses remains almost constant with increasing modifier content suggesting that there is not much change in the local environment. Raman spectra were recorded at room temperature and assigned to TeO4 and TeO3 structural units in these glasses. The peak shift, full width at half maximum (FWHM) of the de-convoluted Raman peaks were analyzed to get information about the local environment. It is observed that these compositions of tellurite glasses are good host materials for rare earth ions as they offer voids in the network. Further, it was observed that the rare earth ion doping has not affected the local environment of the glasses; Dy3+ ions have a slightly higher tendency to polarize Te-O bonds than the Eu3+ ions. Keywords: Niobium-based tellurite glasses, XRD, DSC, FTIR.

2017 ◽  
Vol 268 ◽  
pp. 191-197 ◽  
Author(s):  
Nurhafizah Hasim ◽  
Md Supar Rohani

The modification of absorption characteristics in rare-earth doped tellurite glasses is important in photonics application. The Er3+/Nd3+ doped glasses of the form (69-x)TeO2–15Li2CO3–15Nb2O5–1Er2O3 -(x)Nd2O3 with x =0.2 and 0.6 mol% are successfully made by using conventional melt-quenching technique. The Judd-Ofelt analysis is to determine the local structure and bonding in the vicinity of rare-earth ions. The oscillator strengths are calculated from the absorption spectra and used to evaluate Judd-Ofelt intensity parameters (Ωλ, λ=2, 4 and 6). The values of Ω4 and Ω6 change with the increase of Nd3+ concentration is ascribed to the change in glass network structures. The values of Ω2 are increased from 1.53 to 37.13 (10-22) cm2 with the increase of Nd3+ concentration which indicate an increase in the covalent nature of Nd-O bond and less centrosymmetrical the ion sites. The decrease in τrad for each level with the increase of Nd3+ concentration signifies on how fast a particular level gets depopulated. The values of β for the transitions 4G5/2, 2G7/2 → 4I9/2, 2H11/2 → 4I9/2 and 4F9/2 → 4I9/2 are found to lie in between 99.6 to 100.0%.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3717
Author(s):  
Jae-Young Jung ◽  
Soung-Soo Yi ◽  
Dong-Hyun Hwang ◽  
Chang-Sik Son

The precursor prepared by co-precipitation method was sintered at various temperatures to synthesize crystalline manganese tungstate (MnWO4). Sintered MnWO4 showed the best crystallinity at a sintering temperature of 800 °C. Rare earth ion (Dysprosium; Dy3+) was added when preparing the precursor to enhance the magnetic and luminescent properties of crystalline MnWO4 based on these sintering temperature conditions. As the amount of rare earth ions was changed, the magnetic and luminescent characteristics were enhanced; however, after 0.1 mol.%, the luminescent characteristics decreased due to the concentration quenching phenomenon. In addition, a composite was prepared by mixing MnWO4 powder, with enhanced magnetism and luminescence properties due to the addition of dysprosium, with epoxy. To one of the two prepared composites a magnetic field was applied to induce alignment of the MnWO4 particles. Aligned particles showed stronger luminescence than the composite sample prepared with unsorted particles. As a result of this, it was suggested that it can be used as phosphor and a photosensitizer by utilizing the magnetic and luminescent properties of the synthesized MnWO4 powder with the addition of rare earth ions.


2020 ◽  
Vol 22 (28) ◽  
pp. 16294-16300
Author(s):  
Xiuxia Yang ◽  
Lei Zhao ◽  
Zhichao Liu ◽  
Shuyu Tian ◽  
Hao Zhang ◽  
...  

Manipulating the local environment of CAS by substitution of Al3+–Y3+ for Si4+–Ca2+ to achieve more stability in the structure of CYA.


The theory that has been developed for rare-earth ions in crystals is here applied to the double nitrates. The paramagnetic resonance data and certain spectroscopic properties of the different rare-earth double nitrates, depending as they do on the crystalline electric field at a rare-earth ion, are related to the six parameters through which the field is defined. It is found that most of the experimental results can be fitted to values of the parameters that vary in a systematic fashion along the rare-earth series.


2016 ◽  
Vol 16 (4) ◽  
pp. 4029-4034 ◽  
Author(s):  
Chunxia Liu ◽  
Lixia Yang ◽  
Dan Yue ◽  
Mengnan Wang ◽  
Lin Jin ◽  
...  

Rare earth ions (Tb3+, Eu3+) doped CaWO4 microstructures were synthesized by a facile hydrothermal route without using any templates and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) spectrum. The results indicate that the asprepared samples are well crystallized with scheelite structure of CaWO4, and the average diameter of the microstructures is 2∼4 μm. The morphology of CaWO4:Eu3+ microstructures can be controllably changed from microspheres to microflowers through altering the doping concentration of Eu3+ from 3% to 35%, and the microflowers are constructed by a number of CaWO4:Eu3+ nanoflakes. Under the excitation of UV light, the emission spectrum of CaWO4:Eu3+ is composed of the characteristics emission of Eu3+ 5D0-7FJ (J = 1, 2, 3, 4) transitions, and that of CaWO4:Tb3+ is composed of Tb3+ 5D4-7FJ (J = 6, 5, 4, 3) transitions. Both of the optimal doping concentrations of Tb3+ and Eu3+ in CaWO4 microstructures are about 5%.


RSC Advances ◽  
2015 ◽  
Vol 5 (105) ◽  
pp. 86219-86236 ◽  
Author(s):  
Xiangfu Wang ◽  
Qing Liu ◽  
Yanyan Bu ◽  
Chun-Sheng Liu ◽  
Tao Liu ◽  
...  

Optical temperature sensing is a promising method to achieve the contactless temperature measurement and large-scale imaging. The current status of optical thermometry of rare-earth ions doped phosphors is reviewed in detail.


2019 ◽  
Vol 1154 ◽  
pp. 80-90
Author(s):  
Mohammed Abdul Basheer ◽  
Vagmare Gangadhar ◽  
Guduru Prasad ◽  
Gobburu Subramanya Kumar ◽  
Nandi Venkata Prasad

Double rare-earth (La; Sm/Gd) substituted Aurivillius family of Bismuth Layered Structured Ferroelectrics (BLSF) namely Bi2.6Sm0.2La0.2TiNbO9 (BSLT; sample-A), Bi2.6Gd0.2La0.2TiNbO9 (BGLT; sample-B), single phase ceramics were prepared by solid state route. In addition, intergrowth (x BSLT - (1-x) BGLT, where x=0.49; sample-C) and solid solution (BSLT­x - BGLTy; where x + y=0.4; sample-D) materials were prepared. Dielectric, ferroelectric and Raman spectroscopic properties were studied on the said above materials. The X-ray diffraction analysis and Raman spectra revealed well-formation of stable structure. Though, the sample-C and sample-D have lower coercive field, compared to the sample-A and sample-B, but they exhibited sharp hysterisis loop. Therefore the instrinsic defects of sample-D inhabits more sensitivity towards the ferroelectric behaviour. The results were corroborated to the impedance and dielectrical data. The results were consistent with the SEM micrographs and complex impedance plots. An attempt is made to understand the effect of rare-earth ions on A-site of layered-pervoskite structure, defined as: (Bi2O2)2+(An-1BnO3n+1)2-.The term n represents number of pervoskite blocks interleaved with the bismuth oxide layers.


1999 ◽  
Vol 256-257 ◽  
pp. 89-94 ◽  
Author(s):  
V.K Tikhomirov ◽  
A Jha ◽  
A Perakis ◽  
E Sarantopoulou ◽  
M Naftaly ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document