scholarly journals Влияние низкочастотных магнитогидродинамических мод на развитие филаментов в токамаке Глобус-М

Author(s):  
В.В. Буланин ◽  
В.К. Гусев ◽  
Г.С. Курскиев ◽  
В.Б. Минаев ◽  
М.И. Патров ◽  
...  

Experimental data indicating the influence of the magnetohydrodynamic tearing mode in the Globus-M spherical tokamak on the appearance of filamentary structures (filaments) are presented. The filaments were detected by the Doppler backscattering method. Filament groups localized in the toroidal direction were detected, the appearance of which turned out to be synchronized with the spreading of the tearing mode. The possible causes of the influence of low-frequency MHD oscillations on the occurrence of groups of filamentary perturbations are considered.

2013 ◽  
Vol 321-324 ◽  
pp. 495-498 ◽  
Author(s):  
Dong Chen ◽  
Chao Xu

The reflectivity, loss function, refractive index, extinction coefficient and dielectric function of the LaNi5and LaNi4.5Sn0.5intermetallic compounds are investigated through the plane-wave pseudo-potential method based on the density functional theory. The effects of Sn impurity are discussed and some interesting features are found in the low frequency region. Some important optical properties such as static dielectric constant and static refractive index are obtained. The equation [n (0)]2=ε1(0)is satisfied according to our calculation, which indicates that our results are correct and reasonable. Nevertheless, the calculated results need to be testified in the future due to the lack of experimental data.


Author(s):  
Claudio Braccesi ◽  
Filippo Cianetti ◽  
Renzo Scaletta

The present paper illustrates an evaluation method developed by the authors to quantify the index of motion sickness incidence (MSI) in railways motion conditions. This index is formerly defined in literature to quantify diseases coming from low frequency motions (kinetosis). The proposed method, suggested as alternative to the only one existing in reference norm, involves PCT index, well known in railways context, and weighting curves for accelerometric signals, which are also specified in railways regulations. The approach of the method, consistent with the theoretical model, developed by the authors themselves in previous works, allows to obtain MSI index versus time and/or track progressive distance. The model is validated through comparison with experimental data available in literature and with measures recorded and obtained on regular trains during tests performed in Slovenia (EU).


1978 ◽  
Vol 21 (85) ◽  
pp. 115-122
Author(s):  
J. H. Bilgram ◽  
H. Gränicher

AbstractThe interaction of point detects in ice has been neglected for a long time. Experimental data obtained from dielectric measurements on HF-doped crystals stimulated a new evaluation of the possibility of an interaction between Bjerrum defects and ions. In a previous paper it has been shown that this leads us to assume the existence of aggregates of Bjerrum defects and ions. In this paper these aggregates and Bjerrum defects are used to explain the dielectric properties of ice, especially the temperature dependence of the product of the high and low frequency conductivity σ0σ∞.The interaction of Bjerrum defects and impurity molecules leads to a dependence of the concentration of frenkel pairs on Bjerrum-defect concentration. At HF concentrations above the native Bjerrum-defect concentration the formation of a Frenkel pair is enhanced. This leads to the fast out-diffusion which has been studied in highly doped crystals by means of NMR techniques.


10.14311/450 ◽  
2003 ◽  
Vol 43 (4) ◽  
Author(s):  
P. Hasal ◽  
I. Fořt ◽  
J. Kratěna

Experimental data obtained by measuring the tangential component of the force affecting radial baffles in a flat-bottomed cylindrical mixing vessel stirred with a Rushton turbine impeller is analysed. Spectral analysis of the experimental data demonstrated the presence of its macro-instability (MI) related low-frequency component embedded in the total force. Two distinct dimensionless frequencies (both directly proportional to the impeller speed of rotation N) of the occurence of the MI component were detected: a lower frequency of approximately 0.025N and a higher frequency of about 0.085N. The relative magnitude QMI of the MI-related component of the total tangential force was evaluated by a combination of proper orthogonal decomposition (POD) and spectral analysis. The values of magnitude QMI varied in the interval [rom approximately 0.05 to 0.30. The magnitude QMI takes maximum values at low Reynolds number values (in laminar and transitional regions). In the turbulent region (ReM >20000) the QMI value is low and practically constant. The dependence oj the QMI values on vertical position in the vessel is only marginal. The results suggest that the magnitude of the MI component of the force is significantly influenced by the liquid viscosity and density.


1980 ◽  
Vol 63 (6) ◽  
pp. 1282-1285 ◽  
Author(s):  
Colette Levi

Abstract This report reviews studies concerning the susceptibility of green coffee beans to mycotoxin contamination. Included are investigations on normal mold flora, toxin production in inoculated beans, effect of experimental roasting on aflatoxin, ochratoxin, and sterigmatocystin, and survey on the presence of these toxins in commercial green coffee. Because of the extremely low frequency of findings, the low levels of toxins, and the experimental data showing 70–80% destruction by the roasting process of toxin added to green coffee, further study on this topic has been discontinued.


Author(s):  
Kunio Shimada ◽  
Shigemitsu Shuchi ◽  
Shinichi Kamiyama

We made on numerical analysis of phase difference between pressure along the pipe axis and given oscillatory flow velocity in an straight pipe under a nonuniform steady magnetic field. In the analysis, a few cases under the assumption of numerical condition were conducted on: the first is taking into account the least compressibility of the fluid with using the obtained experimental data of the bulk modulus, the second taking into account the nonuniform distribution of mass concentration of particles, and the thrid taking into account the aggregation with the number of aggregated particles proposing as a prorate spheroid. By considering the three effects of the least compressibility and the nonuniform distribution of mass concentration, the aggregation as a prorate spheroid, the phase difference varies quantitatively at the lowest Womersley number range. And then, the numerical results were compared with the experimental data.


1993 ◽  
Vol 39 (132) ◽  
pp. 373-384 ◽  
Author(s):  
Yu. Ya. Macheret ◽  
M. Yu. Moskalevsky ◽  
E.V. Vasilenko

AbstractThe results of measurements of radio-wave velocities (RWV) by wide-angle reflection (WAR) methods in the temperate Abramov Glacier in the Alai Mountain Ridge and the “two-layered” sub-polar Fridtjovbreen and Hansbreen on Svalbard using a low-frequency (2–13 MHz) radar are considered and discussed. The experimental data obtained and the data from the literature show that the values of RWV could be a good indicator of the hydrothermal state of glaciers. As such, these data enable the identification of cold, temperate and transitional (two-layered) glaciers, and can be used for estimation of the water content in glaciers and changes in the hydrothermal state.


2019 ◽  
Vol 11 ◽  
pp. 175682931983368 ◽  
Author(s):  
Yasir A ElAwad ◽  
Eltayeb M ElJack

High-fidelity large eddy simulation is carried out for the flow field around a NACA-0012 aerofoil at Reynolds number of [Formula: see text], Mach number of 0.4, and various angles of attack around the onset of stall. The laminar separation bubble is formed on the suction surface of the aerofoil and is constituted by the reattached shear layer. At these conditions, the laminar separation bubble is unstable and switches between a short bubble and an open bubble. The instability of the laminar separation bubble triggers a low-frequency flow oscillation. The aerodynamic coefficients oscillate accordingly at a low frequency. The lift and the drag coefficients compare very well to recent high-accuracy experimental data, and the lift leads the drag by a phase shift of [Formula: see text]. The mean lift coefficient peaks at the angle of attack of [Formula: see text], in total agreement with the experimental data. The spectra of the lift coefficient does not show a significant low-frequency peak at angles of attack lower than or equal the stall angle of attack ([Formula: see text]). At higher angles of attack, the spectra show two low-frequency peaks and the low-frequency flow oscillation is fully developed at the angle of attack of [Formula: see text]. The behaviour of the flow-field and changes in the turbulent kinetic energy over one low-frequency flow oscillation cycle are described qualitatively.


1973 ◽  
Vol 36 (3_suppl) ◽  
pp. 1131-1159 ◽  
Author(s):  
M. A. Persinger ◽  
H. W. Ludwig ◽  
K-P. Ossenkopp

Extremely low frequency (ELF) electromagnetic field-waves, defined in this paper as occupying the frequency band of .01 to 100 Hz, are associated with geomagnetic disturbances, weather perturbations, electrical appliance discharges, and possibly seismic movements. ELF electromagnetic phenomena have been recorded as sinusoidal-like wave forms or as ELF pulses of short duration from higher frequency (10 to 100 kHz) waves. Although natural ELF electrical component intensities range from less than 1 mV/m to slightly more than 1 V/m with magnetic components less than a μ gauss and calculated power densities of 10−8 watts/m3, these waves can propagate long distances without appreciable attenuation and penetrate housing structures. Theoretically, it has been calculated that energy available from ELF phenomena can contribute to neuroenergetic functioning and protein-lipid activity. Correlational and experimental data indicate that ELF fields can influence reaction time, timing behavior, ambulatory behavior, oxygen uptake, endocrine changes, cardiovascular functions, and precipitation-clotting times of colloids. Possible mechanisms of ELF-organismic interactions are discussed.


2011 ◽  
Vol 54 (2) ◽  
pp. 116-128 ◽  
Author(s):  
Mark Paulus

This paper presents a set of experimental data comparing repetitive shock (RS) vibration, single-axis electrodynamic (ED) vibration, and multi-axis ED vibration. It was found that multi-axis testing is more severe than single-axis testing at the same level. In addition, weaknesses were found in the RS system at low frequency. Smoothing of the data or poor line resolution was also shown to change the overall severity of a test. A poor correlation was shown between the power spectral density (PSD) and the rate of natural frequency change (RFC) over a wide frequency shift. The change in natural frequency caused the initial PSD to be an ineffective indicator of test severity. Quantification of the severity of the test profile can be accomplished through characterization of the RFC.


Sign in / Sign up

Export Citation Format

Share Document