scholarly journals Лимитирующие режимы роста III-V нитевидных нанокристаллов

Author(s):  
В.Г. Дубровский ◽  
А.С. Соколовский ◽  
H. Hijazi

Theoretical analysis is presented for vapor-liquid-solid growth of III-V nanowires in the presence of three competing processes of the group V deposition, surface diffusion of group III adatoms and nucleation of islands at the liquid-solid interface. A generalized equation for the nanowire growth rate is obtained which can be limited of one of the three processes depending on the growth environment. Different regimes of vapor-liquid-solid growth of III-V nanowires are analyzed depending on the group III and V influxes and nanowire radius.

CrystEngComm ◽  
2018 ◽  
Vol 20 (45) ◽  
pp. 7256-7265 ◽  
Author(s):  
Joseph J. Huson ◽  
Tao Sheng ◽  
Ezekiel Ogle ◽  
Haitao Zhang

Jellyfish-like SiOx nanowires were formed in a reaction intermediate-induced vapor–liquid–solid process, which provides a new method for nanowire growth.


Author(s):  
В.Г. Дубровский ◽  
А.С. Соколовский ◽  
И.В. Штром

An expression for the free energy of forming an island from a catalyst droplet in the vapor-liquid-solid growth of III-V nanowires is obtained. The effect of the droplet depletion with its group V (As) content is studied in the presence of material influx from vapor. Different growth regimes of a nanowire monolayer are theoretically analyzed, including the regime with the stopping size under very low As concentrations in liquid. It is shown that the island stops growing when the As content in the droplet decreases to its equilibrium value. The obtained results should be useful for understanding and modeling the growth kinetics of III-V nanowires, their crystal phase, nucleation statistics and length distributions within the ensembles of nanowires as well as the doping process.


2005 ◽  
Vol 41 (12) ◽  
pp. 1256-1259 ◽  
Author(s):  
V. A. Nebol'sin ◽  
A. A. Shchetinin ◽  
A. A. Dolgachev ◽  
V. V. Korneeva

2013 ◽  
Vol 740-742 ◽  
pp. 323-326
Author(s):  
Kassem Alassaad ◽  
François Cauwet ◽  
Davy Carole ◽  
Véronique Soulière ◽  
Gabriel Ferro

Abstract. In this paper, conditions for obtaining high growth rate during epitaxial growth of SiC by vapor-liquid-solid mechanism are investigated. The alloys studied were Ge-Si, Al-Si and Al-Ge-Si with various compositions. Temperature was varied between 1100 and 1300°C and the carbon precursor was either propane or methane. The variation of layers thickness was studied at low and high precursor partial pressure. It was found that growth rates obtained with both methane and propane are rather similar at low precursor partial pressures. However, when using Ge based melts, the use of high propane flux leads to the formation of a SiC crust on top of the liquid, which limits the growth by VLS. But when methane is used, even at extremely high flux (up to 100 sccm), no crust could be detected on top of the liquid while the deposit thickness was still rather small (between 1.12 μm and 1.30 μm). When using Al-Si alloys, no crust was also observed under 100 sccm methane but the thickness was as high as 11.5 µm after 30 min growth. It is proposed that the upper limitation of VLS growth rate depends mainly on C solubility of the liquid phase.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1681
Author(s):  
Hadi Hijazi ◽  
Vladimir G. Dubrovskii

The vapor–liquid–solid growth of III-V nanowires proceeds via the mononuclear regime, where only one island nucleates in each nanowire monolayer. The expansion of the monolayer is governed by the surface energetics depending on the monolayer size. Here, we study theoretically the role of surface energy in determining the monolayer morphology at a given coverage. The optimal monolayer configuration is obtained by minimizing the surface energy at different coverages for a set of energetic constants relevant for GaAs nanowires. In contrast to what has been assumed so far in the growth modeling of III-V nanowires, we find that the monolayer expansion may not be a continuous process. Rather, some portions of the already formed monolayer may dissolve on one of its sides, with simultaneous growth proceeding on the other side. These results are important for fundamental understanding of vapor–liquid–solid growth at the atomic level and have potential impacts on the statistics within the nanowire ensembles, crystal phase, and doping properties of III-V nanowires.


Sign in / Sign up

Export Citation Format

Share Document