scholarly journals Standardized Precipitation Index Comparison along the Limbe-Bamenda Axis of the Cameroon Gulf of Guinea

2021 ◽  
Vol 3 (1) ◽  
pp. 1-1
Author(s):  
Suiven John Paul Tume ◽  

Mean monthly rainfall decline with continentality is a commonplace phenomenon that has been used in this study to compare its trend in Bamenda in the Western Highlands and Limbe on the Atlantic lowland coast. This study attempts to bridge some of the methodological gaps in the previous studies on rainfall variability in Cameroon that had emphasized only the inter-annual variability and coefficient of variation without focusing on the specific indices and contrasts between different ecological zones. In this study, a comparative analysis has been done of the standardized precipitation index (SPI) for Bamenda and Limbe, using data from 1985–2015. The analysis involved the mean annual rainfall (176.88 mm and 419.9 mm), its standard deviation (SD) (22.98 and 102.42), and the coefficient of variation (CV) (12.99% and 24.41%) for Bamenda and Limbe, respectively. The results show that the mean annual rainfall for Bamenda is decreasing, whereas that of Limbe is increasing. The mean SPI is –0.01 (mild dryness) and 0.02 (mild wetness) for Bamenda and Limbe, respectively. These results have far-reaching implications for the development of agriculture, water resources management, and other man-environment interaction variants.

Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1834
Author(s):  
Justine Kilama Luwa ◽  
Jackson-Gilbert Mwanjalolo Majaliwa ◽  
Yazidhi Bamutaze ◽  
Isa Kabenge ◽  
Petter Pilesjo ◽  
...  

The variabilities in rainfall and temperature in a catchment affect water availability and sustainability. This study assessed the variabilities in rainfall and temperature (1981–2015) and river flow (1998–2015) in the Sipi sub-catchment on annual and seasonal scales. Observed daily rainfall and temperature data for Buginyanya and Kapchorwa weather stations were obtained from the Uganda National Meteorological Authority (UNMA), while the daily river-flow data for Sipi were obtained from the Ministry of Water and Environment (MWE). The study used descriptive statistics, the Standardized Precipitation Index (SPI), Mann–Kendall trend analysis, and Sen’s slope estimator. Results indicate a high coefficient of variation (CV) (CV > 30) for August, September, October, and November (ASON) seasonal rainfall, while annual rainfall had a moderate coefficient of variation (20 ˂ CV ˂ 30). The trend analysis shows that ASON minimum and mean temperatures increased at α = 0.001 and α = 0.05 levels of significance respectively in both stations and over the entire catchment. Furthermore, annual and March, April, and May (MAM) river flows increased at an α = 0.05 level of significance. A total of 14 extremely wet and dry events occurred in the sub-catchment during the post-2000 period, as compared to five in the pre-2000. The significant increased trend of river flow could be attributed to the impacts of climate and land-use changes. Therefore, future studies may need to quantify the impacts of future climate and land-use changes on water resources in the sub-catchment.


2021 ◽  
Author(s):  
DIVYA SAINI ◽  
PANKAJ BHARDWAJ ◽  
Omvir Singh

Abstract In this study, an attempt has been made to examine the recent rainfall variability by means of daily rainfall data of 33 well spread stations over dryland ecosystem of Rajasthan in north western India during 1961-2017. For trend analysis, Mann-Kendall, Sen’s slope estimator and simple linear regression test have been used (at 95% confidence level). The results have shown a high interannual variability in rainfall occurrence varying from 277 mm (in year 2002) to 839 mm (in year 1975) with mean of 583 mm over this dryland ecosystem. Most of the rainfall deficit years have occurred with El-Nino years. The mean annual rainfall has shown a marginal non-significant upward trend over the ecosystem. The station-wise mean annual rainfall has revealed a significant rising trend over Barmer, Churu, Ganganagar, Jaisalmer and Pratapgarh stations. Interestingly, three year running average has shown a cyclic pattern of rainfall over dryland ecosystem under the changing climatic conditions. The spatial pattern has exhibited that the mean annual rainfall decreases from east and south east (more than 850 mm) to west and north west (less than 400 mm), which is mainly associated with the presence of Aravalli Mountains spreading north east to south west in central Rajasthan. Remarkably, majority of stations positioned in western parts of dryland ecosystem have shown increasing rainfall trends, whereas some stations located in eastern parts have recorded a non-significant declining trend. The magnitude of significant rising trend has varied from 5.34 mm/year (Pratapgarh station) to 2.17 mm/year (Jaisalmer station). Also, the frequency of heavy rainfall events has shown a positive trend with significant increasing trends over Bharatpur, Jaisalmer and Pratapgarh stations, whereas Bundi station has shown significant decreasing trend.


Author(s):  
Bruno Henrique Toná Juliani ◽  
Cássia Rocha Pompeu ◽  
Cristhiane Michiko Passos Okawa

The application of the Standardized Precipitation Index was established for 13 rain gauge stations selected in the catchment sub-basins of number 37 and 38, which correspond to the area of the states Rio Grande do Norte and Paraiba. The monthly rainfall data of the stations was analyzed, and the missing data was filled by simple linear regression. A 6-month time scale was adopted for the method; the data was organized in a moving cumulative distribution of precipitation and applied to the Standardized Precipitation Index (SPI). In the application of the method, the cumulative values are processed into a normal distribution with the mean zero and variance one. That way, a drought event begins when the cumulative precipitation in the historical data series reaches an SPI value smaller than or equal to -1.00. Between 22 and 26 events for the stations of the sub-basin 37, and between 18 and 22 events for the stations of sub-basin 38 were identified. Medium-term tendencies were observed, with the occurrence of events every year or two, proving certain seasonality. The obtained values were then transformed into a return period of 20 years, and an isohyetal map was developed with the purpose to show the spatial variation of the event precipitation. By the outlined map, becomes evident an area of higher precipitation rates, situated on the coast along the states, and a drier region, located in the inland territory.


2019 ◽  
Vol 19 (3) ◽  
pp. 125-135 ◽  
Author(s):  
Khadija Diani ◽  
Ilias Kacimi ◽  
Mahmoud Zemzami ◽  
Hassan Tabyaoui ◽  
Ali Torabi Haghighi

Abstract One of the adverse impacts of climate change is drought, and the complex nature of droughts makes them one of the most important climate hazards. Drought indices are generally used as a tool for monitoring changes in meteorological, hydrological, agricultural and economic conditions. In this study, we focused on meteorological drought events in the High Ziz river Basin, central High Atlas, Morocco. The application of drought index analysis is useful for drought assessment and to consider methods of adaptation and mitigation to deal with climate change. In order to analyze drought in the study area, we used two different approaches for addressing the change in climate and particularly in precipitation, i) to assess the climate variability and change over the year, and ii) to assess the change within the year timescale (monthly, seasonally and annually) from 1971 to 2017. In first approach, precipitation data were used in a long time scale e.g. annual and more than one-year period. For this purpose, the Standardized Precipitation Index (SPI) was considered to quantify the rainfall deficit for multiple timescales. For the second approach, trend analysis (using the Mann-Kendall (M-K) test) was applied to precipitation in different time scales within the year. The results showed that the study area has no significant trend in annual rainfall, but in terms of seasonal rainfall, the magnitude of rainfall during summer revealed a positive significant trend in three stations. A significant negative and positive trend in monthly rainfall was observed only in April and August, respectively.


2005 ◽  
Vol 9 (5) ◽  
pp. 523-533 ◽  
Author(s):  
S. M. Vicente-Serrano ◽  
J. I. López-Moreno

Abstract. At present, the Standardized Precipitation Index (SPI) is the most widely used drought index to provide good estimations about the intensity, magnitude and spatial extent of droughts. The main advantage of the SPI in comparison with other indices is the fact that the SPI enables both determination of drought conditions at different time scales and monitoring of different drought types. It is widely accepted that SPI time scales affect different sub-systems in the hydrological cycle due to the fact that the response of the different water usable sources to precipitation shortages can be very different. The long time scales of SPI are related to hydrological droughts (river flows and reservoir storages). Nevertheless, few analyses empirically verify these statements or the usefulness of the SPI time scales to monitor drought. In this paper, the SPI at different time scales is compared with surface hydrological variables in a big closed basin located in the central Spanish Pyrenees. We provide evidence about the way in which the longer (>12 months) SPI time scales may not be useful for drought quantification in this area. In general, the surface flows respond to short SPI time scales whereas the reservoir storages respond to longer time scales (7–10 months). Nevertheless, important seasonal differences can be identified in the SPI-usable water sources relationships. This suggests that it is necessary to test the drought indices and time scales in relation to their usefulness for monitoring different drought types under different environmental conditions and water demand situations.


Sign in / Sign up

Export Citation Format

Share Document