scholarly journals Asociación simbiótica entre hongos micorrízicos arbusculares y el sistema radicular de plántulas de cacao (Theobroma cacao L.): efecto de la formononetina y la disponibilidad de fósforo en el suelo.

2010 ◽  
Vol 12 (1) ◽  
pp. 77 ◽  
Author(s):  
Guillermo Andrés Cuadros G. ◽  
Raúl Gómez S

<p>La simbiosis entre plantas de cacao y hongos micorrízicos arbusculares (HFMA) confiere beneficios nutricionales y competitivos a la planta, especialmente en condiciones de baja disponibilidad de nutrientes. Se evaluó tres niveles de fósforo (5, 20 y 40 ppm) y la presencia o ausencia de isoflavonoide formononetina. El nivel 14 ppm de P sin el isoflavonoide fue el tratamiento testigo. Todos los tratamientos fueron inoculados con HFMA a excepción del tratamiento control. Se utilizó un diseño completamente al azar y se determinaron caracteres morfológicos de la planta a los 70, 110 y 150 días después de la inoculación. Los resultados no mostraron respuesta diferencial a los caracteres morfológicos de la planta por la disponibilidad del isoflavonoide durante los tres muestreos. La longitud radicular presentó diferencias significativas en los muestreo (70, 110 y 150 días de inoculación), siendo esta respuesta dependiente de la disponibilidad de P y la interacción plantamicorriza. El número de esporas mostró diferencias entre los muestreos de 110 y 150 días de inoculación en presencia y ausencia del isoflavonoide, sugiriendo una rápida estimulación en el establecimiento de la relación simbiótica por la formononetina en el proceso de germinación y formación de estructuras fúngicas.</p><p> </p><p><strong>Symbiotic asociation of arbuscular mycorrhizal fungi and the root system of cocoa (Theobroma cacao L.) seedlings: effect of formononetin and phosphorus availability at soil level</strong>.</p><p>The symbiosis established between cacao plants and arbuscular mycorrhizal fungi (AMF) adds nutritional and competitive benefits for the plant, especially in conditions with a low availability of nutrients. We evaluated three levels of phosphorus (5, 20 and 40 ppm) and the presence or absence of isoflavone formononetin. A Phosphorus level of 14 ppm, without isoflavone or inoculation was the control. All treatments were inoculated with HFMA with the exception of the control. A completely randomized design was used. The morphological characters of the plant at 70, 110 and 150 days after inoculation were determined. The results showed no difference in the response to the morphological characters of the plant with the varied availability of isoflavone during the three sampling. The root length showed significant differences in the different sampling times (70, 110 and 150 days of inoculation), this response being dependent on the availability of P and plant-mycorrhizal interactions. The number of spores demonstrated differences between the samples of 110 and 150 days of inoculation in the presence and absence of isoflavone, suggesting an early stimulation in the establishment of the symbiotic relationship of formononetin in the process of germination and formation of fungal structures. </p>

2010 ◽  
Vol 82 (3) ◽  
pp. 771-777 ◽  
Author(s):  
Edson L. Souchie ◽  
Rosario Azcón ◽  
Jose M. Barea ◽  
Eliane M.R. Silva ◽  
Orivaldo J. Saggin-Júnior

This study evaluated the synergism between several P-solubilizing fungi isolates and arbuscular mycorrhizal fungi to improve clover ( Trifolium pratense) growth in the presence of Araxá apatite. Clover was sown directly in plastic pots with 300g of sterilized washed sand, vermiculite and sepiolite 1:1:1 (v:v:v) as substrate, and grown in a controlled environment chamber. The substrate was fertilized with 3 g L-1 of Araxá apatite. A completely randomized design, in 8×2 factorial scheme (eight P-solubilizing fungi treatments with or without arbuscular mycorrhizal fungi)and four replicates were used. The P-solubilizing fungi treatments consisted of five Brazilian P-solubilizing fungi isolates (PSF 7, 9, 20, 21 and 22), two Spanish isolates ( Aspergillus niger and the yeast Yarowia lipolytica) and control (non-inoculated treatment). The greatest clover growth rate was recorded when Aspergillus niger and PSF 21 were co-inoculated with arbuscular mycorrhizal fungi. Aspergillus niger, PSF 7 and PSF 21 were the most effective isolates on increasing clover growth in the presence of arbuscular mycorrhizal fungi. Greater mycorrhizal colonization resulted in greater clover growth rate in most PSF treatments. PSF 7 was the best isolate to improve the establishment of mycorrhizal and rhizobia symbiosis.


2020 ◽  
Vol 17 (4) ◽  
pp. 150
Author(s):  
O. TRISILAWATI

<p>ABSTRACT</p><p>The effects of several arbuscular mycorrhizal fungi (AMF) on thegrowth, nutrient uptake (nitrogen, phosphorus, and potassium), and acidphosphate activity of two promising numbers of Anacardium occidentaleseedling were evaluated. The experiment was conducted in the greenhouse of Indonesian Spices and Medicinal Crops Research Institute(BALITTRO) in 2002 for six months on a randomized design with twofactors and four replicates. First factor was isolate (six isolates of AMFand one control) consisting of : 1) control; 2) Glomus aggregatum; 3)Glomus etunicatum; 4) Mycofer; 5) Glomus sp.; 6) a mixture of Glomussp1, Glomus sp2, Glomus sp3, Glomus sp4, Glomus etunicatum,Gigaspora margarita, Gigaspora sp., and Enthropospora sp., and 7)Gigaspora sp. The second factor was two cashew promising numbers :Asembagus and Wonogiri. The results showed that AMF inoculationsignificantly affected the growth of cashew. Mycofer and mixed AMFwere more effective to Wonogiri promising number, while for Asembaguspromising number inoculation of mycofer was more effective. Inoculationwith mycofer to Asembagus promising number increased the uptake of Pand K nutrients by 65 and 53% while inoculation with mycofer and mixedAMF to Wonogiri promising number increased the uptake of N, P and Knutrients by 55, 38, and 17%, and by 18, 31, and 17%. Moreover, theAMF inoculation resulted in higher phosphatase activity. In mycorrhizalAsembagus promising number infected by mixed AMF, the increment ofphosphatase activity was 136.5%, whether in Wonogiri promising numberinfected by mycofer, the increment of phosphatase activity was 80% thancontrol.</p><p>Key words: Anacardium occidentale, promising number, growth,phosphatase activity</p><p>ABSTRAK</p><p>Pengaruh Pupuk Hayati Fungi Mikoriza Arbuskula(FMA) terhadap Pertumbuhan Benih Jambu Mete</p><p>Penelitian ini bertujuan untuk mengetahui pengaruh beberapa jenisfungi mikoriza arbuskula (FMA) terhadap pertumbuhan, serapan hara danaktivitas enzim fosfatase dari dua nomor harapan benih jambu mete(Anacardium occidentale). Penelitian dilakukan di rumah kaca Balittropada tahun 2002 selama 6 bulan, menggunakan rancangan acak yangterdiri dari dua faktor dan diulang empat kali. Faktor pertama adalahisolate (6 jenis isolat FMA dan satu kontrol) yaitu: 1). kontrol; 2). Glomusaggregatum; 3) Glomus etunicatum; 4). Mycofer; 5). Glomus sp.; 6).campuran dari Glomus sp1, Glomus sp2, Glomus sp3, Glomus sp4, Glomusetunicatum, Gigaspora margarita, Gigaspora sp., Enthropospora sp., dan7). Gigaspora sp. Faktor kedua adalah nomor harapan jambu mete, yaituAsembagus dan Wonogiri. Hasil penelitian mendapatkan bahwa inokulasiFMA berpengaruh nyata terhadap pertumbuhan jambu mete. Mycofer dancampuran FMA lebih efektif berpengaruh terhadap nomor harapanWonogiri, sedangkan mycofer lebih efektif berpengaruh terhadap nomorharapan Asembagus. Serapan hara P dan K pada nomor harapanAsembagus yang diinokulasi mycofer meningkat sebesar 65 dan 53%,sedangkan nomor harapan Wonogiri yang diinokulasi mycofer dancampuran FMA, serapan hara N, P, dan K meningkat masing-masingsebesar 55; 38; dan 17%, dan 18; 31; dan 17%. Selain itu, inokulasi FMAdapat meningkatkan aktivitas fosfatase akar jambu mete. Peningkatanaktivitas fosfatase akar jambu mete nomor harapan Asembagus yangterinfeksi oleh campuran FMA sebesar 136,5%, sedangkan pada nomorharapan Wonogiri yang terinfeksi mycofer, peningkatnnya sebesar 80%dibandingkan kontrol.</p><p>Kata kunci: Anacardium occidentale, nomor harapan, pertumbuhan,aktivitas fosfatase</p>


2021 ◽  
Vol 3 (2) ◽  
pp. 601-612
Author(s):  
Roni Novianto ◽  
◽  
Sri Hartatik ◽  

Okra is a vegetable crop that has a high selling value and the production of okra is more exported than sold domestically. The demand for okra from year to year continues to increase from various countries, especially Japan, which imports the most okra from Indonesia. Fertilization of phosphorus (P) fertilizer to fulfill nutrients and provision of arbuscular mycorrhizal fungi (CMA) for more efficient and maximum absorption by plants. Phosphorus (P) fertilizer can increase the production and quality of okra. The aim of this study was to determine the combination of treatment of arbuscular mycorrhizal fungi and which dosage of P fertilizer was best to increase the yield of okra production. The design used was a completely randomized design (CRD) with factorial treatment consisting of two factors. The first factor is the dose of arbucular mycorrhizal fungi (CMA) consisting of 4 levels, namely (0; 160; 320; 480) and the second factor is the dose of P fertilizer (75; 100; 125; 150). Parameters observed were plant height, number of leaves per plant, volume of roots, number of fruits per plant, weight of fresh fruit per plant and weight of plant dry corpse. Based on the analysis of variance, it showed that the interaction was significantly different on the variables of root volume, plant height, number of fruits and fruit weight. Based on research, the CMA dose of 320 kg / ha and the dose of 125 kg / ha gave the highest production results.


2015 ◽  
Vol 50 (4) ◽  
pp. 313-321 ◽  
Author(s):  
Marco Aurélio Carbone Carneiro ◽  
Dorotéia Alves Ferreira ◽  
Edicarlos Damacena de Souza ◽  
Helder Barbosa Paulino ◽  
Orivaldo José Saggin Junior ◽  
...  

The objective of this work was to evaluate the spore density and diversity of arbuscular mycorrhizal fungi (AMF) in soil aggregates from fields of "murundus" (large mounds of soil) in areas converted and not converted to agriculture. The experiment was conducted in a completely randomized design with five replicates, in a 5x3 factorial arrangement: five areas and three aggregate classes (macro-, meso-, and microaggregates). The evaluated variables were: spore density and diversity of AMF, total glomalin, total organic carbon (TOC), total extraradical mycelium (TEM), and geometric mean diameter (GMD) of soil aggregates. A total of 21 AMF species was identified. Spore density varied from 29 to 606 spores per 50 mL of soil and was higher in microaggregates and in the area with 6 years of conversion to agriculture. Total glomalin was higher between murundus in all studied aggregate classes. The area with 6 years showed lower concentration of TOC in macroaggregates (8.6 g kg-1) and in microaggregates (10.1 g kg-1). TEM was greater at the top of the murundus in all aggregate classes. GMD increased with the conversion time to agriculture. The density and diversity of arbuscular mycorrhizal spores change with the conversion of fields of murundus into agriculture.


2018 ◽  
Vol 31 (3) ◽  
pp. 602-611 ◽  
Author(s):  
JESSICA SILVA SANTOS ◽  
JACILENE FRANCISCA SOUZA SANTOS ◽  
LÁZARA JOSSIKARLA DE OLIVEIRA LOPES ◽  
JOHNY DE JESUS MENDONÇA ◽  
FRANCISCO SANDRO RODRIGUES HOLANDA ◽  
...  

ABSTRACT Vetiver grass is a member of the grass family Poaceae. Its fast development is probably due to the interaction with native microbiota, whose influence has not been studied yet. The objective of this work was to evaluate the colonization and development of the vetiver grass (Chrysopogon zizanioides (L.) Roberty) inoculated with arbuscular mycorrhizal fungi and dark septate endophytic fungi. The experimental design was a completely randomized design with six treatments (control, without mycorrhizal fungi, native inoculants, UFLA05 - Gigaspora albida, UFLA351 - Rhizoglomus clarum, UFLA372 - Claroideoglomus etunicatum, and UFLA401 - Acaulospora morrowiae), with three replicates each. Vetiver grass tillers as well as the native microbial inoculum were obtained from the Lower São Francisco river experimental area, located in Sergipe state, Northeastern Brazil. There was a negative interaction between all tested UFLAs mycorrhizal isolates and the native microbiota (mycorrhizal and endophytic fungi) in the treatments, especially when taking into consideration plant height and volume of roots. The effects of inoculation with UFLA isolates may have been influenced by the presence of the native mycorrhizal fungi and the dark septate endophytic fungi. Vetiver grass was responsive to the native inoculant. The mycorrhizal colonization of the vetiver grass was vesicular, but the formation of the arbuscules can be influenced by the interaction between the fungus, plant, and the environment.


2006 ◽  
Vol 41 (9) ◽  
pp. 1405-1411 ◽  
Author(s):  
Edson Luiz Souchie ◽  
Rosario Azcón ◽  
Jose Miguel Barea ◽  
Orivaldo José Saggin-Júnior ◽  
Eliane Maria Ribeiro da Silva

The objective of this work was to evaluate the ability of several P-solubilizing fungi to solubilize aluminum phosphate and Araxá apatite as well as the synergism between the P-solubilizing fungus, PSF 7, and arbuscular mycorrhizal fungi to promote clover growth amended with aluminum phosphate. Two experiments were carried out, the first under laboratory conditions and the second in a controlled environmental chamber. In the first experiment, PSF 7, PSF 9, PSF 21 and PSF 22 isolates plus control were incubated in liquid medium at 28ºC for eight days. On the 2nd, 4th and 8th day of incubation, pH and soluble P were determined. In the second experiment, clover was sowed in plastic pots containing 300 g of sterilized substrate amended with aluminum phosphate, 3 g L-1, in presence and absence of PSF 7 isolate and arbuscular mycorrhizal fungi. A completely randomized design, in factorial outline 2x2 (presence and absence of PSF 7 and arbuscular mycorrhizal fungi) and five replicates were used. In the first experiment, higher P content was detected in the medium containing aluminum phosphate. PSF 7 is the best fungi isolate which increases aluminum solubilization with major tolerance to Al3+. Clover growth was stimulated by presence of PSF 7 and arbuscular mycorrhizal fungi. There is synergism between microorganisms utilized to improve plant nutrition.


Sign in / Sign up

Export Citation Format

Share Document