Nitric Oxide inhibits NF-kB-mediated survival signaling: possible role for anti-TNF- family cancer therapies (Preprint)

2020 ◽  
Author(s):  
Joseph Alan Bauer ◽  
Joseph A. Lupica ◽  
Joseph A. DiDonato ◽  
Daniel J. Lindner

BACKGROUND We have previously demonstrated the anti-tumor activity of a nitric oxide-donor, nitrosylcobalamin (NO-Cbl), mediated by increased expression of tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) and its receptors in human tumors. OBJECTIVE The specific aim of this study was to examine the effects of nitric oxide (NO) on nuclear factor kappa B (NF-kB) and determine whether nitric oxide could sensitize drug-resistant melanomas to Apo2L/TRAIL via inhibition of NF-kB or Inhibitor kappa B kinase (IKK). METHODS Antiproliferative effects of NO-Cbl and Apo2L/TRAIL were assessed in malignant melanomas and non-tumorigenic melanocyte and fibroblast cell lines. Athymic nude mice bearing human melanoma A375 xenografts were treated with NO-Cbl and Apo2L/TRAIL. Apoptosis was measured by TUNEL. The activation status of NF-kB was established by assaying luciferase reporter activity, the phosphorylation status of IkBa, and in vitro IKK activity. RESULTS NO-Cbl sensitized Apo2L/TRAIL-resistant melanoma cell lines to growth inhibition by Apo2L/TRAIL but had minimal effect on normal cell lines. NO-Cbl and Apo2L/TRAIL exerted synergistic anti-tumor activity against A375 xenografts. NO-Cbl suppressed Apo2L/TRAIL- and TNF-a-mediated activation of a transfected NF-kB-driven luciferase reporter. NO-Cbl inhibited IKK activation, characterized by decreased phosphorylation of IkBa. CONCLUSIONS NO-Cbl treatment rendered Apo2L/TRAIL-resistant malignancies sensitive to the anti-tumor effects of Apo2L/TRAIL in vitro and in vivo. The use of NO-Cbl and Apo2L/TRAIL capitalizes on the tumor-specific properties of both agents and represents a promising anti-cancer combination based on current anti-TNF-super family clinical strategies. CLINICALTRIAL n/a INTERNATIONAL REGISTERED REPORT RR2-10.1074/jbc.W119.011721

2020 ◽  
Author(s):  
Joseph Alan Bauer ◽  
Joseph A. Lupica ◽  
Joseph A. DiDonato ◽  
Daniel J. Lindner

BACKGROUND Chemoresistance is a major consequence of multicycle chemotherapy and can be attributed to constitutive activation of pro-survival signaling pathways. Nitric oxide is a ubiquitous signaling molecule which has been shown to inhibit several pathways involved with survival signaling in cancer cells. We have previously demonstrated the anti-tumor activity of a nitric oxide-donor, nitrosylcobalamin (NO-Cbl), mediated by increased expression of tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) and its receptors in human tumors. We have also demonstrated that a functional Apo2L/TRAIL receptor is necessary for the induction of cell death by NO-Cbl and the Apo2L/TRAIL death receptor DR4 (TRAIL R1) is S-nitrosylated. OBJECTIVE The specific aim of this study was to examine the effects of nitric oxide (NO) on nuclear factor kappa B (NF-κB) and determine whether nitric oxide could sensitize drug-resistant melanomas to Apo2L/TRAIL via inhibition of NF-κB or Inhibitor kappa B kinase (IKK). METHODS Antiproliferative effects of NO-Cbl and Apo2L/TRAIL were assessed in malignant melanomas and non-tumorigenic melanocyte and fibroblast cell lines. Athymic nude mice bearing human melanoma A375 xenografts were treated with NO-Cbl and Apo2L/TRAIL. Apoptosis was measured by TUNEL. The activation status of NF-κB was established by assaying luciferase reporter activity, the phosphorylation status of IκBα, and in vitro IKK activity. RESULTS NO-Cbl sensitized Apo2L/TRAIL-resistant melanoma cell lines to growth inhibition by Apo2L/TRAIL but had minimal effect on normal cell lines. NO-Cbl and Apo2L/TRAIL exerted synergistic anti-tumor activity against A375 xenografts. NO-Cbl suppressed Apo2L/TRAIL- and TNF-α-mediated activation of a transfected NF-κB-driven luciferase reporter. NO-Cbl inhibited IKK activation, characterized by decreased phosphorylation of IκBα. CONCLUSIONS NO-Cbl treatment rendered Apo2L/TRAIL-resistant malignancies sensitive to the anti-tumor effects of Apo2L/TRAIL in vitro and in vivo. The use of nitric oxide to inhibit NF-κB and potentiate the effects of chemotherapeutic agents, such as Apo2L/TRAIL, represents a promising anti-cancer combination based on recent clinical investigations of anti-TRAIL antibodies for cancer treatment strategies. CLINICALTRIAL NA


Tumor Biology ◽  
2021 ◽  
Vol 43 (1) ◽  
pp. 11-26
Author(s):  
Maike Busch ◽  
Natalia Miroschnikov ◽  
Jaroslaw Thomas Dankert ◽  
Marc Wiesehöfer ◽  
Klaus Metz ◽  
...  

BACKGROUND: Retinoblastoma (RB) is the most common childhood eye cancer. Chemotherapeutic drugs such as etoposide used in RB treatment often cause massive side effects and acquired drug resistances. Dysregulated genes and miRNAs have a large impact on cancer progression and development of chemotherapy resistances. OBJECTIVE: This study was designed to investigate the involvement of retinoic acid receptor alpha (RARα) in RB progression and chemoresistance as well as the impact of miR-138, a potential RARα regulating miRNA. METHODS: RARα and miR-138 expression in etoposide resistant RB cell lines and chemotherapy treated patient tumors compared to non-treated tumors was revealed by Real-Time PCR. Overexpression approaches were performed to analyze the effects of RARα on RB cell viability, apoptosis, proliferation and tumorigenesis. Besides, we addressed the effect of miR-138 overexpression on RB cell chemotherapy resistance. RESULTS: A binding between miR-138 and RARα was shown by dual luciferase reporter gene assay. The study presented revealed that RARα is downregulated in etoposide resistant RB cells, while miR-138 is endogenously upregulated. Opposing RARα and miR-138 expression levels were detectable in chemotherapy pre-treated compared to non-treated RB tumor specimen. Overexpression of RARα increases apoptosis levels and reduces tumor cell growth of aggressive etoposide resistant RB cells in vitro and in vivo. Overexpression of miR-138 in chemo-sensitive RB cell lines partly enhances cell viability after etoposide treatment. CONCLUSIONS: Our findings show that RARα acts as a tumor suppressor in retinoblastoma and is downregulated upon etoposide resistance in RB cells. Thus, RARα may contribute to the development and progression of RB chemo-resistance.


2020 ◽  
Vol 15 (1) ◽  
pp. 871-883
Author(s):  
Jinshan Zhang ◽  
Dan Rao ◽  
Haibo Ma ◽  
Defeng Kong ◽  
Xiaoming Xu ◽  
...  

AbstractBackgroundOsteosarcoma is a common primary malignant bone cancer. Long noncoding RNA small nucleolar RNA host gene 15 (SNHG15) has been reported to play an oncogenic role in many cancers. Nevertheless, the role of SNHG15 in the doxorubicin (DXR) resistance of osteosarcoma cells has not been fully addressed.MethodsCell Counting Kit-8 assay was conducted to measure the half-maximal inhibitory concentration value of DXR in osteosarcoma cells. Western blotting was carried out to examine the levels of autophagy-related proteins and GDNF family receptor alpha-1 (GFRA1). Quantitative reverse transcription-polymerase chain reaction was performed to determine the levels of SNHG15, miR-381-3p, and GFRA1. The proliferation of osteosarcoma cells was measured by MTT assay. The binding sites between miR-381-3p and SNHG15 or GFRA1 were predicted by Starbase bioinformatics software, and the interaction was confirmed by dual-luciferase reporter assay. Murine xenograft model was established to validate the function of SNHG15 in vivo.ResultsAutophagy inhibitor 3-methyladenine sensitized DXR-resistant osteosarcoma cell lines to DXR. SNHG15 was upregulated in DXR-resistant osteosarcoma tissues and cell lines. SNHG15 knockdown inhibited the proliferation, DXR resistance, and autophagy of osteosarcoma cells. MiR-381-3p was a direct target of SNHG15, and GFRA1 bound to miR-381-3p in osteosarcoma cells. SNHG15 contributed to DXR resistance through the miR-381-3p/GFRA1 axis in vitro. SNHG15 depletion contributed to the inhibitory effect of DXR on osteosarcoma tumor growth through the miR-381-3p/GFRA1 axis in vivo.ConclusionsSNHG15 enhanced the DXR resistance of osteosarcoma cells through elevating the autophagy via targeting the miR-381-3p/GFRA1 axis. Restoration of miR-381-3p expression might be an underlying therapeutic strategy to overcome the DXR resistance of osteosarcoma.


2002 ◽  
Vol 92 (5) ◽  
pp. 2012-2018 ◽  
Author(s):  
Damian J. Horstman ◽  
Lars G. Fischer ◽  
Peter C. Kouretas ◽  
Robert L. Hannan ◽  
George F. Rich

Heparin and nitric oxide (NO) attenuate changes to the pulmonary vasculature caused by prolonged hypoxia. Heparin may increase NO; therefore, we hypothesized that heparin may attenuate hypoxia-induced pulmonary vascular remodeling via a NO-mediated mechanism. In vivo, rats were exposed to normoxia (N) or hypoxia (H; 10% O2) with or without heparin (1,200 U · kg−1 · day−1) and/or the NO synthase (NOS) inhibitor N ω-nitro-l-arginine methyl ester (l-NAME; 20 mg · kg−1 · day−1) for 3 days or 3 wk. Heparin attenuated increases in pulmonary arterial pressure, the percentage of muscular pulmonary vessels, and their medial thickness induced by 3 wk of H. Importantly, althoughl-NAME alone had no effect, it prevented these effects of heparin on vascular remodeling. In H lungs, heparin increased NOS activity and cGMP levels at 3 days and 3 wk and endothelial NOS protein expression at 3 days but not at 3 wk. In vitro, heparin (10 and 100 U · kg−1 · ml−1) increased cGMP levels after 10 min and 24 h in N and anoxic (0% O2) endothelial cell-smooth muscle cell (SMC) coculture. SMC proliferation, assessed by 5-bromo-2′-deoxyuridine incorporation during a 3-h incubation period, was decreased by heparin under N, but not anoxic, conditions. The antiproliferative effects of heparin were not altered byl-NAME. In conclusion, the in vivo results suggest that attenuation of hypoxia-induced pulmonary vascular remodeling by heparin is NO mediated. Heparin increases cGMP in vitro; however, the heparin-induced decrease in SMC proliferation in the coculture model appears to be NO independent.


2021 ◽  
Author(s):  
Wentao Li ◽  
Ismatullah Soufiany ◽  
Xiao Lyu ◽  
Lin Zhao ◽  
Chenfei Lu ◽  
...  

Abstract Background: Mounting evidences have shown the importance of lncRNAs in tumorigenesis and cancer progression. LBX2-AS1 is an oncogenic lncRNA that has been found abnormally expressed in gastric cancer and lung cancer samples. Nevertheless, the biological function of LBX2-AS1 in glioblastoma (GBM) and potential molecular mechanism are largely unclear. Methods: Relative levels of LBX2-AS1 in GBM samples and cell lines were detected by qRT-PCR and FISH. In vivo and in vitro regulatory effects of LBX2-AS1 on cell proliferation, epithelial-to-mesenchymal transition (EMT) and angiogenesis in GBM were examined through xenograft models and functional experiments, respectively. The interaction between Sp1 and LBX2-AS1 was assessed by ChIP. Through bioinformatic analyses, dual-luciferase reporter assay, RIP and Western blot, the regulation of LBX2-AS1 and miR-491-5p on the target gene leukemia Inhibitory factor (LIF) was identified. Results: LBX2-AS1 was upregulated in GBM samples and cell lines, and its transcription was promoted by binding to the transcription factor Sp1. As a lncRNA mainly distributed in the cytoplasm, LBX2-AS1 upregulated LIF, and activated the LIF/STAT3 signaling by exerting the miRNA sponge effect on miR-491-5p, thus promoting cell proliferation, EMT and angiogenesis in GBM. Besides, LBX2-AS1 was unfavorable to the progression of glioma and the survival. Conclusion: Upregulated by Sp1, LBX2-AS1 promotes the progression of GBM by targeting the miR-491-5p/LIF axis. It is suggested that LBX2-AS1 may be a novel diagnostic biomarker and therapeutic target of GBM.


2020 ◽  
Author(s):  
Juanjuan Shi ◽  
Xijian Xu ◽  
Dan Zhang ◽  
Jiuyan Zhang ◽  
Hui Yang ◽  
...  

Abstract Background: Long non-coding RNA PTPRG antisense RNA 1 (PTPRG-AS1) deregulation has been reported in various human malignancies and identified as an important modulator of cancer development. Few reports have focused on the detailed role of PTPRG-AS1 in epithelial ovarian cancer (EOC) and its underlying mechanism. This study aimed to determine the physiological function of PTPRG-AS1 in EOC. A series of experiments were also performed to identify the mechanisms through which PTPRG-AS1 exerts its function in EOC.Methods: Reverse transcription-quantitative polymerase chain reaction was used to determine PTPRG-AS1 expression in EOC tissues and cell lines. PTPRG-AS1 was silenced in EOC cells and studied with respect to cell proliferation, apoptosis, migration, and invasion in vitro and tumor growth in vivo. The putative miRNAs that target PTPRG-AS1 were predicted using bioinformatics analysis and further confirmed in luciferase reporter and RNA immunoprecipitation assays.Results: Our data verified the upregulation of PTPRG-AS1 in EOC tissues and cell lines. High PTPRG-AS1 expression was associated with shorter overall survival in patients with EOC. Functionally, EOC cell proliferation, migration, invasion in vitro, and tumor growth in vivo were suppressed by PTPRG-AS1 silencing. In contrast, cell apoptosis was promoted by loss of PTPRG-AS1. Regarding the mechanism, PTPRG-AS1 could serve as a competing endogenous RNA in EOC cells by decoying microRNA-545-3p (miR-545-3p), thereby elevating histone deacetylase 4 (HDAC4) expression. Furthermore, rescue experiments revealed that PTPRG-AS1 knockdown-mediated effects on EOC cells were, in part, counteracted by the inhibition of miR-545-3p or restoration of HDAC4.Conclusions: PTPRG-AS1 functioned as an oncogenic lncRNA that aggravated the malignancy of EOC through the miR-545-3p/HDAC4 ceRNA network. Thus, targeting the PTPRG-AS1/miR-545-3p/HDAC4 pathway may be a novel strategy for EOC anticancer therapy.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2522-2522 ◽  
Author(s):  
Nishitha Reddy ◽  
Raymond Cruz ◽  
Francisco Hernandez-Ilizaliturri ◽  
Joy Knight ◽  
Myron S. Czuczman

Abstract Background: Lenalidomide is a potent thalidomide analogue shown to activate both the innate and adoptive immune system, inhibit angiogenesis, and modify the tumor microenvironment. While lenalidomide has received approval by the U.S. Federal Drug Administration (FDA) for the treatment of various hematological conditions, ongoing clinical trials are addressing its role in the treatment of B-cell lymphomas. There is a dire need to develop novel well-tolerated, therapies which combine various target-specific agents such as lenalidomide and monoclonal antibodies (mAbs). We previously demonstrated that lenalidomide is capable of expanding natural killer (NK) cells in a human-lymphoma-bearing SCID mouse model and improve rituximab anti-tumor activity in vivo. Methods: In our current work we studied the effects of lenalidomide on the biological activity of a panel of mAbs against various B-cell lymphomas, utilizing various rituximab-sensitive (RSCL) and rituximab-resistant cell lines (RRCL) generated in our laboratory from Raji and RL cell lines. Functional assays including antibody-dependant cellular cytotoxicity (ADCC) and complement-mediated cytotoxicity (CMC) were performed to demonstrate changes in sensitivity to rituximab. RSCL and RRCL (1′105 cells/well) were exposed to either lenalidomide (5 μg/ml) or vehicle with or without mAb at a final concentration of 10μg/ml. The mAb panel consisted of two anti-CD20 mAbs: rituximab (Biogen IDEC, Inc.) and hA20, a humanized anti-CD20 mAb (Immunomedics, Inc.); an anti-CD80 mAb (galixumab, Biogen IDEC Inc.), and an anti-CD52 antibody (Alemtuzumab, Berlex Inc.). Changes in DNA synthesis and cell proliferation were determined at 24 and 48 hrs by [3H]-thymidine uptake. For ADCC/CMC studies, NHL cells were exposed to lenalidomide or vehicle for 24 hrs and then labeled with 51Cr prior to treatment with one of various mAbs (10 mg/ml) and peripheral blood mononuclear cells (Effector: Target ratio, 40:1) or human serum, respectively. 51Cr-release was measured and the percentage of lysis was calculated. Changes in antigen (CD20, CD80, and CD52) expression following in vitro exposure to lenalidomide were studied by multicolor flow cytometric analysis. Results: Concomitant in vitro exposure of various RSCL and RRCL cells to lenalidomide and either galixumab, hA20 or alemtuzumab for 24 hrs resulted in improved anti-tumor activity when compared to controls. In addition, pre-incubation of both RSCL and RRCL with lenalidomide rendered cells more susceptible to alemtuzumab-, hA20- and galixumab-mediated ADCC and CMC. No antigen modulation (i.e., upregulation) was observed following in vitro exposure of lenalidomide to NHL cell lines, suggesting an alternative mechanism involved in the improvement antitumor activity observed. Conclusions: Our data suggest that the augmented antitumor effect of lenalidomide is not limited to its combination with rituximab, but also that it augments the antiproliferative and biological activity of alemtuzumab, hA20 and galixumab. Furthermore, these interactions are observed even in our RRCL. Future studies will be directed towards evaluating whether similar activity will be seen in vivo using a human lymphoma-bearing SCID mouse model. (Supported by USPHS grant PO1-CA103985 from the National Cancer Institute.)


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1718-1718 ◽  
Author(s):  
Toshihiko Ishii ◽  
Asher Alban Chanan-Khan ◽  
Jazur Jafferjee ◽  
Noreen Ersing ◽  
Takeshi Takahashi ◽  
...  

Abstract BIW-8962 is a humanized anti-ganglioside GM2 (GM2) monoclonal antibody, produced by Poteligent technology to enhance ADCC activity. GM2 is expressed on many cancer cells including multiple myeloma (MM), small cell lung cancer and glioma cells. In this study, we evaluated the anti-myeloma activity of BIW-8962 in preclinical myeloma models both in vitro and in vivo. Expression of GM2 was analyzed in 15 human MM cell lines by FCM. Eleven out of 15 MM cell lines had positive surface expression of GM2. GM2 as a potential target was then verified in primary MM samples obtained from patients. Eleven out of 15 samples were positive for GM2. We then used two GM2 positive MM cell lines (U266B1 and KMS-11) and evaluated ADCC and CDC activity of BIW-8962 in vitro. BIW-8962 exhibited a potent ADCC and less potent CDC activity. In vivo anti-tumor activity of BIW-8962 was then examined using the standard subcutaneous xenograft model; KMS-11 was inoculated in the flank of SCID mice. BIW-8962 (intravenously administered biweekly for 3 weeks) exhibited a potent anti-tumor activity from as low a dose level as 0.1 mg/kg. Furthermore, in a more clinically relevant model, in which OPM-2/GFP (GM2 positive MM cell line) cells were intravenously inoculated into SCID mice with preferentially tumor growth within the bone marrow microenvironment, BIW-8962 (intravenously administered biweekly for 4 weeks, 10 mg/kg) suppressed OPM-2/GFP cell growth and serum M protein elevation, demonstrating in vivo anti-myeloma effect of BIW-8962. Our preclinical investigations rationalize clinical evaluation of BIW-8962 in patients with MM. Currently BIW-8962 is being investigated in a Phase 1 study in patients with multiple myeloma.


Sign in / Sign up

Export Citation Format

Share Document