scholarly journals Institution-Specific Machine Learning Models for Prehospital Assessment to Predict Hospital Admission: Prediction Model Development Study (Preprint)

2020 ◽  
Author(s):  
Toru Shirakawa ◽  
Tomohiro Sonoo ◽  
Kentaro Ogura ◽  
Ryo Fujimori ◽  
Konan Hara ◽  
...  

BACKGROUND Although multiple prediction models have been developed to predict hospital admission to emergency departments (EDs) to address overcrowding and patient safety, only a few studies have examined prediction models for prehospital use. Development of institution-specific prediction models is feasible in this age of data science, provided that predictor-related information is readily collectable. OBJECTIVE We aimed to develop a hospital admission prediction model based on patient information that is commonly available during ambulance transport before hospitalization. METHODS Patients transported by ambulance to our ED from April 2018 through March 2019 were enrolled. Candidate predictors were age, sex, chief complaint, vital signs, and patient medical history, all of which were recorded by emergency medical teams during ambulance transport. Patients were divided into two cohorts for derivation (3601/5145, 70.0%) and validation (1544/5145, 30.0%). For statistical models, logistic regression, logistic lasso, random forest, and gradient boosting machine were used. Prediction models were developed in the derivation cohort. Model performance was assessed by area under the receiver operating characteristic curve (AUROC) and association measures in the validation cohort. RESULTS Of 5145 patients transported by ambulance, including deaths in the ED and hospital transfers, 2699 (52.5%) required hospital admission. Prediction performance was higher with the addition of predictive factors, attaining the best performance with an AUROC of 0.818 (95% CI 0.792-0.839) with a machine learning model and predictive factors of age, sex, chief complaint, and vital signs. Sensitivity and specificity of this model were 0.744 (95% CI 0.716-0.773) and 0.745 (95% CI 0.709-0.776), respectively. CONCLUSIONS For patients transferred to EDs, we developed a well-performing hospital admission prediction model based on routinely collected prehospital information including chief complaints.

10.2196/20324 ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. e20324
Author(s):  
Toru Shirakawa ◽  
Tomohiro Sonoo ◽  
Kentaro Ogura ◽  
Ryo Fujimori ◽  
Konan Hara ◽  
...  

Background Although multiple prediction models have been developed to predict hospital admission to emergency departments (EDs) to address overcrowding and patient safety, only a few studies have examined prediction models for prehospital use. Development of institution-specific prediction models is feasible in this age of data science, provided that predictor-related information is readily collectable. Objective We aimed to develop a hospital admission prediction model based on patient information that is commonly available during ambulance transport before hospitalization. Methods Patients transported by ambulance to our ED from April 2018 through March 2019 were enrolled. Candidate predictors were age, sex, chief complaint, vital signs, and patient medical history, all of which were recorded by emergency medical teams during ambulance transport. Patients were divided into two cohorts for derivation (3601/5145, 70.0%) and validation (1544/5145, 30.0%). For statistical models, logistic regression, logistic lasso, random forest, and gradient boosting machine were used. Prediction models were developed in the derivation cohort. Model performance was assessed by area under the receiver operating characteristic curve (AUROC) and association measures in the validation cohort. Results Of 5145 patients transported by ambulance, including deaths in the ED and hospital transfers, 2699 (52.5%) required hospital admission. Prediction performance was higher with the addition of predictive factors, attaining the best performance with an AUROC of 0.818 (95% CI 0.792-0.839) with a machine learning model and predictive factors of age, sex, chief complaint, and vital signs. Sensitivity and specificity of this model were 0.744 (95% CI 0.716-0.773) and 0.745 (95% CI 0.709-0.776), respectively. Conclusions For patients transferred to EDs, we developed a well-performing hospital admission prediction model based on routinely collected prehospital information including chief complaints.


2019 ◽  
Author(s):  
Wongeun Song ◽  
Se Young Jung ◽  
Hyunyoung Baek ◽  
Chang Won Choi ◽  
Young Hwa Jung ◽  
...  

BACKGROUND Neonatal sepsis is associated with most cases of mortalities and morbidities in the neonatal intensive care unit (NICU). Many studies have developed prediction models for the early diagnosis of bloodstream infections in newborns, but there are limitations to data collection and management because these models are based on high-resolution waveform data. OBJECTIVE The aim of this study was to examine the feasibility of a prediction model by using noninvasive vital sign data and machine learning technology. METHODS We used electronic medical record data in intensive care units published in the Medical Information Mart for Intensive Care III clinical database. The late-onset neonatal sepsis (LONS) prediction algorithm using our proposed forward feature selection technique was based on NICU inpatient data and was designed to detect clinical sepsis 48 hours before occurrence. The performance of this prediction model was evaluated using various feature selection algorithms and machine learning models. RESULTS The performance of the LONS prediction model was found to be comparable to that of the prediction models that use invasive data such as high-resolution vital sign data, blood gas estimations, blood cell counts, and pH levels. The area under the receiver operating characteristic curve of the 48-hour prediction model was 0.861 and that of the onset detection model was 0.868. The main features that could be vital candidate markers for clinical neonatal sepsis were blood pressure, oxygen saturation, and body temperature. Feature generation using kurtosis and skewness of the features showed the highest performance. CONCLUSIONS The findings of our study confirmed that the LONS prediction model based on machine learning can be developed using vital sign data that are regularly measured in clinical settings. Future studies should conduct external validation by using different types of data sets and actual clinical verification of the developed model.


Author(s):  
Sooyoung Yoo ◽  
Jinwook Choi ◽  
Borim Ryu ◽  
Seok Kim

Abstract Background Unplanned hospital readmission after discharge reflects low satisfaction and reliability in care and the possibility of potential medical accidents, and is thus indicative of the quality of patient care and the appropriateness of discharge plans. Objectives The purpose of this study was to develop and validate prediction models for all-cause unplanned hospital readmissions within 30 days of discharge, based on a common data model (CDM), which can be applied to multiple institutions for efficient readmission management. Methods Retrospective patient-level prediction models were developed based on clinical data of two tertiary general university hospitals converted into a CDM developed by Observational Medical Outcomes Partnership. Machine learning classification models based on the LASSO logistic regression model, decision tree, AdaBoost, random forest, and gradient boosting machine (GBM) were developed and tested by manipulating a set of CDM variables. An internal 10-fold cross-validation was performed on the target data of the model. To examine its transportability, the model was externally validated. Verification indicators helped evaluate the model performance based on the values of area under the curve (AUC). Results Based on the time interval for outcome prediction, it was confirmed that the prediction model targeting the variables obtained within 30 days of discharge was the most efficient (AUC of 82.75). The external validation showed that the model is transferable, with the combination of various clinical covariates. Above all, the prediction model based on the GBM showed the highest AUC performance of 84.14 ± 0.015 for the Seoul National University Hospital cohort, yielding in 78.33 in external validation. Conclusions This study showed that readmission prediction models developed using machine-learning techniques and CDM can be a useful tool to compare two hospitals in terms of patient-data features.


10.2196/15965 ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. e15965
Author(s):  
Wongeun Song ◽  
Se Young Jung ◽  
Hyunyoung Baek ◽  
Chang Won Choi ◽  
Young Hwa Jung ◽  
...  

Background Neonatal sepsis is associated with most cases of mortalities and morbidities in the neonatal intensive care unit (NICU). Many studies have developed prediction models for the early diagnosis of bloodstream infections in newborns, but there are limitations to data collection and management because these models are based on high-resolution waveform data. Objective The aim of this study was to examine the feasibility of a prediction model by using noninvasive vital sign data and machine learning technology. Methods We used electronic medical record data in intensive care units published in the Medical Information Mart for Intensive Care III clinical database. The late-onset neonatal sepsis (LONS) prediction algorithm using our proposed forward feature selection technique was based on NICU inpatient data and was designed to detect clinical sepsis 48 hours before occurrence. The performance of this prediction model was evaluated using various feature selection algorithms and machine learning models. Results The performance of the LONS prediction model was found to be comparable to that of the prediction models that use invasive data such as high-resolution vital sign data, blood gas estimations, blood cell counts, and pH levels. The area under the receiver operating characteristic curve of the 48-hour prediction model was 0.861 and that of the onset detection model was 0.868. The main features that could be vital candidate markers for clinical neonatal sepsis were blood pressure, oxygen saturation, and body temperature. Feature generation using kurtosis and skewness of the features showed the highest performance. Conclusions The findings of our study confirmed that the LONS prediction model based on machine learning can be developed using vital sign data that are regularly measured in clinical settings. Future studies should conduct external validation by using different types of data sets and actual clinical verification of the developed model.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1590
Author(s):  
Muhammad Syafrudin ◽  
Ganjar Alfian ◽  
Norma Latif Fitriyani ◽  
Muhammad Anshari ◽  
Tony Hadibarata ◽  
...  

Detecting self-care problems is one of important and challenging issues for occupational therapists, since it requires a complex and time-consuming process. Machine learning algorithms have been recently applied to overcome this issue. In this study, we propose a self-care prediction model called GA-XGBoost, which combines genetic algorithms (GAs) with extreme gradient boosting (XGBoost) for predicting self-care problems of children with disability. Selecting the feature subset affects the model performance; thus, we utilize GA to optimize finding the optimum feature subsets toward improving the model’s performance. To validate the effectiveness of GA-XGBoost, we present six experiments: comparing GA-XGBoost with other machine learning models and previous study results, a statistical significant test, impact analysis of feature selection and comparison with other feature selection methods, and sensitivity analysis of GA parameters. During the experiments, we use accuracy, precision, recall, and f1-score to measure the performance of the prediction models. The results show that GA-XGBoost obtains better performance than other prediction models and the previous study results. In addition, we design and develop a web-based self-care prediction to help therapist diagnose the self-care problems of children with disabilities. Therefore, appropriate treatment/therapy could be performed for each child to improve their therapeutic outcome.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yohei Hirano ◽  
Yutaka Kondo ◽  
Toru Hifumi ◽  
Shoji Yokobori ◽  
Jun Kanda ◽  
...  

AbstractIn this study, we aimed to develop and validate a machine learning-based mortality prediction model for hospitalized heat-related illness patients. After 2393 hospitalized patients were extracted from a multicentered heat-related illness registry in Japan, subjects were divided into the training set for development (n = 1516, data from 2014, 2017–2019) and the test set (n = 877, data from 2020) for validation. Twenty-four variables including characteristics of patients, vital signs, and laboratory test data at hospital arrival were trained as predictor features for machine learning. The outcome was death during hospital stay. In validation, the developed machine learning models (logistic regression, support vector machine, random forest, XGBoost) demonstrated favorable performance for outcome prediction with significantly increased values of the area under the precision-recall curve (AUPR) of 0.415 [95% confidence interval (CI) 0.336–0.494], 0.395 [CI 0.318–0.472], 0.426 [CI 0.346–0.506], and 0.528 [CI 0.442–0.614], respectively, compared to that of the conventional acute physiology and chronic health evaluation (APACHE)-II score of 0.287 [CI 0.222–0.351] as a reference standard. The area under the receiver operating characteristic curve (AUROC) values were also high over 0.92 in all models, although there were no statistical differences compared to APACHE-II. This is the first demonstration of the potential of machine learning-based mortality prediction models for heat-related illnesses.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 943
Author(s):  
Joung Ouk (Ryan) Kim ◽  
Yong-Suk Jeong ◽  
Jin Ho Kim ◽  
Jong-Weon Lee ◽  
Dougho Park ◽  
...  

Background: This study proposes a cardiovascular diseases (CVD) prediction model using machine learning (ML) algorithms based on the National Health Insurance Service-Health Screening datasets. Methods: We extracted 4699 patients aged over 45 as the CVD group, diagnosed according to the international classification of diseases system (I20–I25). In addition, 4699 random subjects without CVD diagnosis were enrolled as a non-CVD group. Both groups were matched by age and gender. Various ML algorithms were applied to perform CVD prediction; then, the performances of all the prediction models were compared. Results: The extreme gradient boosting, gradient boosting, and random forest algorithms exhibited the best average prediction accuracy (area under receiver operating characteristic curve (AUROC): 0.812, 0.812, and 0.811, respectively) among all algorithms validated in this study. Based on AUROC, the ML algorithms improved the CVD prediction performance, compared to previously proposed prediction models. Preexisting CVD history was the most important factor contributing to the accuracy of the prediction model, followed by total cholesterol, low-density lipoprotein cholesterol, waist-height ratio, and body mass index. Conclusions: Our results indicate that the proposed health screening dataset-based CVD prediction model using ML algorithms is readily applicable, produces validated results and outperforms the previous CVD prediction models.


2019 ◽  
Vol 21 (9) ◽  
pp. 662-669 ◽  
Author(s):  
Junnan Zhao ◽  
Lu Zhu ◽  
Weineng Zhou ◽  
Lingfeng Yin ◽  
Yuchen Wang ◽  
...  

Background: Thrombin is the central protease of the vertebrate blood coagulation cascade, which is closely related to cardiovascular diseases. The inhibitory constant Ki is the most significant property of thrombin inhibitors. Method: This study was carried out to predict Ki values of thrombin inhibitors based on a large data set by using machine learning methods. Taking advantage of finding non-intuitive regularities on high-dimensional datasets, machine learning can be used to build effective predictive models. A total of 6554 descriptors for each compound were collected and an efficient descriptor selection method was chosen to find the appropriate descriptors. Four different methods including multiple linear regression (MLR), K Nearest Neighbors (KNN), Gradient Boosting Regression Tree (GBRT) and Support Vector Machine (SVM) were implemented to build prediction models with these selected descriptors. Results: The SVM model was the best one among these methods with R2=0.84, MSE=0.55 for the training set and R2=0.83, MSE=0.56 for the test set. Several validation methods such as yrandomization test and applicability domain evaluation, were adopted to assess the robustness and generalization ability of the model. The final model shows excellent stability and predictive ability and can be employed for rapid estimation of the inhibitory constant, which is full of help for designing novel thrombin inhibitors.


2017 ◽  
Vol 35 (1) ◽  
pp. 18-27 ◽  
Author(s):  
Jacinta A Lucke ◽  
Jelle de Gelder ◽  
Fleur Clarijs ◽  
Christian Heringhaus ◽  
Anton J M de Craen ◽  
...  

ObjectiveThe aim of this study was to develop models that predict hospital admission to ED of patients younger and older than 70 and compare their performance.MethodsPrediction models were derived in a retrospective observational study of all patients≥18 years old visiting the ED of a university hospital during the first 6 months of 2012. Patients were stratified into two age groups (<70 years old and ≥70 years old). Multivariable logistic regression analysis was used to identify predictors of hospital admission among factors available immediately after patient arrival to the ED. Validation of the prediction models was performed on patients presenting to the ED during the second half of the year 2012.Results10 807 patients were included in the derivation and 10 480 in the validation cohorts. The strongest independent predictors of hospital admission among the 8728 patients <70 years old were age, sex, triage category, mode of arrival, performance of blood tests, chief complaint, ED revisit, type of specialist, phlebotomised blood sample and all vital signs. The area under the curve (AUC) of the validation cohort for those <70 years old was 0.86 (95% CI 0.85 to 0.87). Among the 2079 patients ≥70 years, the same factors were predictive, except for gender, type of specialist and heart rate; the AUC was 0.77 (95% CI 0.75 to 0.79). The prediction models could identify a group of 10% of patients with the highest risk in whom hospital admission was predicted at ED triage, with a positive predictive value (PPV) of 71% (95% CI 68% to 74%) in younger patients and PPV of 87% (95% CI 81% to 92%) in older patients.ConclusionDemographic and clinical factors readily available early in the ED visit can be useful in identifying patients who are likely to be admitted to the hospital. While the model for the younger patients had a higher AUC, the model for older patients had a higher PPV in identifying the patients at highest risk for admission. Of note, heart rate was not a useful predictor in the older patients.


Sign in / Sign up

Export Citation Format

Share Document