scholarly journals Machine learning-based mortality prediction model for heat-related illness

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yohei Hirano ◽  
Yutaka Kondo ◽  
Toru Hifumi ◽  
Shoji Yokobori ◽  
Jun Kanda ◽  
...  

AbstractIn this study, we aimed to develop and validate a machine learning-based mortality prediction model for hospitalized heat-related illness patients. After 2393 hospitalized patients were extracted from a multicentered heat-related illness registry in Japan, subjects were divided into the training set for development (n = 1516, data from 2014, 2017–2019) and the test set (n = 877, data from 2020) for validation. Twenty-four variables including characteristics of patients, vital signs, and laboratory test data at hospital arrival were trained as predictor features for machine learning. The outcome was death during hospital stay. In validation, the developed machine learning models (logistic regression, support vector machine, random forest, XGBoost) demonstrated favorable performance for outcome prediction with significantly increased values of the area under the precision-recall curve (AUPR) of 0.415 [95% confidence interval (CI) 0.336–0.494], 0.395 [CI 0.318–0.472], 0.426 [CI 0.346–0.506], and 0.528 [CI 0.442–0.614], respectively, compared to that of the conventional acute physiology and chronic health evaluation (APACHE)-II score of 0.287 [CI 0.222–0.351] as a reference standard. The area under the receiver operating characteristic curve (AUROC) values were also high over 0.92 in all models, although there were no statistical differences compared to APACHE-II. This is the first demonstration of the potential of machine learning-based mortality prediction models for heat-related illnesses.

2019 ◽  
Vol 26 (2) ◽  
pp. 1289-1304 ◽  
Author(s):  
Syed Waseem Abbas Sherazi ◽  
Yu Jun Jeong ◽  
Moon Hyun Jae ◽  
Jang-Whan Bae ◽  
Jong Yun Lee

Cardiovascular disease is the leading cause of death worldwide so, early prediction and diagnosis of cardiovascular disease is essential for patients affected by this fatal disease. The goal of this article is to propose a machine learning–based 1-year mortality prediction model after discharge in clinical patients with acute coronary syndrome. We used the Korea Acute Myocardial Infarction Registry data set, a cardiovascular disease database registered in 52 hospitals in Korea for 1 November 2005–30 January 2008 and selected 10,813 subjects with 1-year follow-up traceability. The ranges of hyperparameters to find the best prediction model were selected from four different machine learning models. Then, we generated each machine learning–based mortality prediction model with hyperparameters completed the range fitness via grid search using training data and was evaluated by fourfold stratified cross-validation. The best prediction model with the highest performance was found, and its hyperparameters were extracted. Finally, we compared the performance of machine learning–based mortality prediction models with GRACE in area under the receiver operating characteristic curve, precision, recall, accuracy, and F-score. The area under the receiver operating characteristic curve in applied machine learning algorithms was averagely improved up to 0.08 than in GRACE, and their major prognostic factors were different. This implementation would be beneficial for prediction and early detection of major adverse cardiovascular events in acute coronary syndrome patients.


2021 ◽  
Author(s):  
Jaeyoung Yang ◽  
Hong-Gook Lim ◽  
Wonhyeong Park ◽  
Dongseok Kim ◽  
Jin Sun Yoon ◽  
...  

Abstract BackgroundPrediction of mortality in intensive care units is very important. Thus, various mortality prediction models have been developed for this purpose. However, they do not accurately reflect the changing condition of the patient in real time. The aim of this study was to develop and evaluate a machine learning model that predicts short-term mortality in the intensive care unit using four easy-to-collect vital signs.MethodsTwo independent retrospective observational cohorts were included in this study. The primary training cohort included the data of 1968 patients admitted to the intensive care unit at the Veterans Health Service Medical Center, Seoul, South Korea, from January 2018 to March 2019. The external validation cohort comprised the records of 409 patients admitted to the medical intensive care unit at Seoul National University Hospital, Seoul, South Korea, from January 2019 to December 2019. Datasets of four vital signs (heart rate, systolic blood pressure, diastolic blood pressure, and peripheral capillary oxygen saturation [SpO2]) measured every hour for 10 h were used for the development of the machine learning model. The performances of mortality prediction models generated using five machine learning algorithms, Random Forest (RF), XGboost, perceptron, convolutional neural network, and Long Short-Term Memory, were calculated and compared using area under the receiver operating characteristic curve (AUROC) values and an external validation dataset.ResultsThe machine learning model generated using the RF algorithm showed the best performance. Its AUROC was 0.922, which is much better than the 0.8408 of the Acute Physiology and Chronic Health Evaluation II. Thus, to investigate the importance of variables that influence the performance of the machine learning model, machine learning models were generated for each observation time or vital sign using the RF algorithm. The machine learning model developed using SpO2 showed the best performance (AUROC, 0.89). ConclusionsThe mortality prediction model developed in this study using data from only four types of commonly recorded vital signs is simpler than any existing mortality prediction model. This simple yet powerful new mortality prediction model could be useful for early detection of probable mortality and appropriate medical intervention, especially in rapidly deteriorating patients.


2019 ◽  
Author(s):  
Sungjun Hong ◽  
Sungjoo Lee ◽  
Jeonghoon Lee ◽  
Won Chul Cha ◽  
Kyunga Kim

BACKGROUND The development and application of clinical prediction models using machine learning in clinical decision support systems is attracting increasing attention. OBJECTIVE The aims of this study were to develop a prediction model for cardiac arrest in the emergency department (ED) using machine learning and sequential characteristics and to validate its clinical usefulness. METHODS This retrospective study was conducted with ED patients at a tertiary academic hospital who suffered cardiac arrest. To resolve the class imbalance problem, sampling was performed using propensity score matching. The data set was chronologically allocated to a development cohort (years 2013 to 2016) and a validation cohort (year 2017). We trained three machine learning algorithms with repeated 10-fold cross-validation. RESULTS The main performance parameters were the area under the receiver operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC). The random forest algorithm (AUROC 0.97; AUPRC 0.86) outperformed the recurrent neural network (AUROC 0.95; AUPRC 0.82) and the logistic regression algorithm (AUROC 0.92; AUPRC=0.72). The performance of the model was maintained over time, with the AUROC remaining at least 80% across the monitored time points during the 24 hours before event occurrence. CONCLUSIONS We developed a prediction model of cardiac arrest in the ED using machine learning and sequential characteristics. The model was validated for clinical usefulness by chronological visualization focused on clinical usability.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 728 ◽  
Author(s):  
Lijuan Yan ◽  
Yanshen Liu

Student performance prediction has become a hot research topic. Most of the existing prediction models are built by a machine learning method. They are interested in prediction accuracy but pay less attention to interpretability. We propose a stacking ensemble model to predict and analyze student performance in academic competition. In this model, student performance is classified into two symmetrical categorical classes. To improve accuracy, three machine learning algorithms, including support vector machine (SVM), random forest, and AdaBoost are established in the first level and then integrated by logistic regression via stacking. A feature importance analysis was applied to identify important variables. The experimental data were collected from four academic years in Hankou University. According to comparative studies on five evaluation metrics (precision, recall, F1, error, and area   under   the   receiver   operating   characteristic   curve ( AUC ) in this analysis, the proposed model generally performs better than compared models. The important variables identified from the analysis are interpretable, they can be used as guidance to select potential students.


Author(s):  
Tara Lagu ◽  
Mihaela Stefan ◽  
Quinn Pack ◽  
Auras Atreya ◽  
Mohammad A Kashef ◽  
...  

Background: Mortality prediction models, developed with the goal of improving risk stratification in hospitalized heart failure (HF) patients, show good performance characteristics in the datasets in which they were developed but have not been validated in external populations. Methods: We used a novel multi-hospital dataset [HealthFacts (Cerner Corp)] derived from the electronic health record (years 2010-2012). We examined the performance of four published HF inpatient mortality prediction models developed using data from: the Acute Decompensated Heart Failure National Registry (ADHERE), the Enhanced Feedback for Effective Cardiac Treatment (EFFECT) study, and the Get With the Guidelines-Heart Failure (GWTG-HF) registry. We compared to an administrative HF mortality prediction model (Premier model) that includes selected patient demographics, comorbidities, prior heart failure admissions, and therapies administered (e.g., inotropes, mechanical ventilation) in the first 2 hospital days. We also compared to a model that uses clinical data but is not heart failure-specific: the Laboratory-Based Acute Physiology Score (LAPS2). We included patients aged ≥18 years admitted with HF to one of 62 hospitals in the database. We applied all 6 models to the data and calculated the c-statistics. Results: We identified 13,163 patients ≥18 years old with a diagnosis of heart failure. Median age was 74 years; approximately half were women; 65% of patients were white and 27% were black. In-hospital mortality was 4.3%. Bland-Altman plots revealed that, at higher predicted mortality, the Premier model outperformed the clinical models. Discrimination of the models varied: ADHERE model (0.68); EFFECT (0.70); GWTG-HF, Peterson (0.69); GWTG-HF, Eapen (0.70); LAPS2 (0.74); Premier (0.81) (Figure). Conclusions: Clinically-derived inpatient heart failure mortality models exhibited similar performance with c statistics hovering around 0.70. A generic clinical mortality prediction model (LAPS2) had slightly better performance, as did a detailed administrative model. Any of these models may be useful for severity adjustment in comparative effectiveness studies of heart failure patients. When clinical data are not available, the administrative model performs similarly to clinical models.


Author(s):  
Henock M. Deberneh ◽  
Intaek Kim

Prediction of type 2 diabetes (T2D) occurrence allows a person at risk to take actions that can prevent onset or delay the progression of the disease. In this study, we developed a machine learning (ML) model to predict T2D occurrence in the following year (Y + 1) using variables in the current year (Y). The dataset for this study was collected at a private medical institute as electronic health records from 2013 to 2018. To construct the prediction model, key features were first selected using ANOVA tests, chi-squared tests, and recursive feature elimination methods. The resultant features were fasting plasma glucose (FPG), HbA1c, triglycerides, BMI, gamma-GTP, age, uric acid, sex, smoking, drinking, physical activity, and family history. We then employed logistic regression, random forest, support vector machine, XGBoost, and ensemble machine learning algorithms based on these variables to predict the outcome as normal (non-diabetic), prediabetes, or diabetes. Based on the experimental results, the performance of the prediction model proved to be reasonably good at forecasting the occurrence of T2D in the Korean population. The model can provide clinicians and patients with valuable predictive information on the likelihood of developing T2D. The cross-validation (CV) results showed that the ensemble models had a superior performance to that of the single models. The CV performance of the prediction models was improved by incorporating more medical history from the dataset.


2021 ◽  
Vol 11 (5) ◽  
pp. 343
Author(s):  
Fabiana Tezza ◽  
Giulia Lorenzoni ◽  
Danila Azzolina ◽  
Sofia Barbar ◽  
Lucia Anna Carmela Leone ◽  
...  

The present work aims to identify the predictors of COVID-19 in-hospital mortality testing a set of Machine Learning Techniques (MLTs), comparing their ability to predict the outcome of interest. The model with the best performance will be used to identify in-hospital mortality predictors and to build an in-hospital mortality prediction tool. The study involved patients with COVID-19, proved by PCR test, admitted to the “Ospedali Riuniti Padova Sud” COVID-19 referral center in the Veneto region, Italy. The algorithms considered were the Recursive Partition Tree (RPART), the Support Vector Machine (SVM), the Gradient Boosting Machine (GBM), and Random Forest. The resampled performances were reported for each MLT, considering the sensitivity, specificity, and the Receiving Operative Characteristic (ROC) curve measures. The study enrolled 341 patients. The median age was 74 years, and the male gender was the most prevalent. The Random Forest algorithm outperformed the other MLTs in predicting in-hospital mortality, with a ROC of 0.84 (95% C.I. 0.78–0.9). Age, together with vital signs (oxygen saturation and the quick SOFA) and lab parameters (creatinine, AST, lymphocytes, platelets, and hemoglobin), were found to be the strongest predictors of in-hospital mortality. The present work provides insights for the prediction of in-hospital mortality of COVID-19 patients using a machine-learning algorithm.


10.2196/15932 ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. e15932
Author(s):  
Sungjun Hong ◽  
Sungjoo Lee ◽  
Jeonghoon Lee ◽  
Won Chul Cha ◽  
Kyunga Kim

Background The development and application of clinical prediction models using machine learning in clinical decision support systems is attracting increasing attention. Objective The aims of this study were to develop a prediction model for cardiac arrest in the emergency department (ED) using machine learning and sequential characteristics and to validate its clinical usefulness. Methods This retrospective study was conducted with ED patients at a tertiary academic hospital who suffered cardiac arrest. To resolve the class imbalance problem, sampling was performed using propensity score matching. The data set was chronologically allocated to a development cohort (years 2013 to 2016) and a validation cohort (year 2017). We trained three machine learning algorithms with repeated 10-fold cross-validation. Results The main performance parameters were the area under the receiver operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC). The random forest algorithm (AUROC 0.97; AUPRC 0.86) outperformed the recurrent neural network (AUROC 0.95; AUPRC 0.82) and the logistic regression algorithm (AUROC 0.92; AUPRC=0.72). The performance of the model was maintained over time, with the AUROC remaining at least 80% across the monitored time points during the 24 hours before event occurrence. Conclusions We developed a prediction model of cardiac arrest in the ED using machine learning and sequential characteristics. The model was validated for clinical usefulness by chronological visualization focused on clinical usability.


2018 ◽  
Author(s):  
Maliazurina Saad

AbstractTo date, developing a reliable mortality prediction model remains challenging. Although clinical predictors like age, gender and laboratory results are of considerable predictive value, the accuracy often ranges only between 60-80%. In this study, we proposed prediction models built on the basis of clinical covariates with adjustment for additional variables that was radiographically induced. The proposed method exhibited a high degree of prediction accuracy of between 83-92%, as well as overall improvement of between 6-20% in all other metrics, such as ROC Area, False Positive Rates, Recall and Root Mean Square Error. We provide a proof of concept that there is an added value for incorporating the additional variables while predicting 24-month mortality in pulmonary carcinomas patients with cavitary lesions. It is hoped that the findings will be clinically useful to the medical community.


Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Mohammad M. Banoei ◽  
Roshan Dinparastisaleh ◽  
Ali Vaeli Zadeh ◽  
Mehdi Mirsaeidi

Abstract Background The coronavirus disease 2019 (COVID-19) pandemic caused by the SARS-Cov2 virus has become the greatest health and controversial issue for worldwide nations. It is associated with different clinical manifestations and a high mortality rate. Predicting mortality and identifying outcome predictors are crucial for COVID patients who are critically ill. Multivariate and machine learning methods may be used for developing prediction models and reduce the complexity of clinical phenotypes. Methods Multivariate predictive analysis was applied to 108 out of 250 clinical features, comorbidities, and blood markers captured at the admission time from a hospitalized cohort of patients (N = 250) with COVID-19. Inspired modification of partial least square (SIMPLS)-based model was developed to predict hospital mortality. Prediction accuracy was randomly assigned to training and validation sets. Predictive partition analysis was performed to obtain cutting value for either continuous or categorical variables. Latent class analysis (LCA) was carried to cluster the patients with COVID-19 to identify low- and high-risk patients. Principal component analysis and LCA were used to find a subgroup of survivors that tends to die. Results SIMPLS-based model was able to predict hospital mortality in patients with COVID-19 with moderate predictive power (Q2 = 0.24) and high accuracy (AUC > 0.85) through separating non-survivors from survivors developed using training and validation sets. This model was obtained by the 18 clinical and comorbidities predictors and 3 blood biochemical markers. Coronary artery disease, diabetes, Altered Mental Status, age > 65, and dementia were the topmost differentiating mortality predictors. CRP, prothrombin, and lactate were the most differentiating biochemical markers in the mortality prediction model. Clustering analysis identified high- and low-risk patients among COVID-19 survivors. Conclusions An accurate COVID-19 mortality prediction model among hospitalized patients based on the clinical features and comorbidities may play a beneficial role in the clinical setting to better management of patients with COVID-19. The current study revealed the application of machine-learning-based approaches to predict hospital mortality in patients with COVID-19 and identification of most important predictors from clinical, comorbidities and blood biochemical variables as well as recognizing high- and low-risk COVID-19 survivors.


Sign in / Sign up

Export Citation Format

Share Document