Electronic Medical Record-Based Machine Learning Approach to Predict the Risk of 30-Day Adverse Cardiac Events after Invasive Coronary Treatment (Preprint)

2020 ◽  
Author(s):  
Osung Kwon ◽  
Wonjun Na ◽  
Hee Jun Kang ◽  
Tae Joon Jun ◽  
Jihoon Kweon ◽  
...  

BACKGROUND Although there is a growing interest in prediction models based on electronic medical record (EMR), to identify patients at risk of adverse cardiac events following invasive coronary treatment, robust models fully utilizing EMR data are limited. OBJECTIVE We aimed to develop and validate machine-learning (ML) models using diverse fields of EMR to predict risk of 30-day adverse cardiac events after percutaneous intervention or bypass surgery. METHODS EMR data of 5,184,565 records of 16,793 patients at a quaternary hospital between 2006-2016, was categorized into static basic (e.g. demographics), dynamic time-series (e.g. laboratory values), and cardiac-specific data (e.g. coronary angiography). The data were randomly split into training, tuning, and testing sets in a ratio of 3:1:1. Each model was evaluated with 5-fold cross-validation and with an external EMR-based cohort at a tertiary hospital. Logistic regression (LR), random forest (RF), gradient boosting machine (GBM), and feedforward neural network (FNN) algorithms were applied. Primary outcome was 30-day mortality following invasive treatment. RESULTS GBM showed the best performance with area under the receiver operating characteristic curve (AUROC) of 0.99; RF had a similar AUROC of 0.98. AUROCs of FNN and LR were 0.96 and 0.93, respectively. GBM had the highest area under the precision-recall curve (AUPRC) of 0.80 and those of RF, LR and FNN were 0.73, 0.68, and 0.63, respectively. All models showed low Brier scores of <0.1 as well as highly fitted calibration plots, indicating a good fit of the ML-based models. On external validation, the GBM model demonstrated maximal performance with AUROCs 0.90, while FNN had AUROC of 0.85. The AUROC of LR and RF were slightly lower at 0.80, and 0.79, respectively. The AUPRCs of GBM, LR, and FNN were similar at 0.47, 0.43, and 0.41, respectively, while that of RF was lower at 0.33. All models showed low Brier scores of 0.1. Among the categories in the GBM model, time-series dynamic data demonstrated high AUROC of >0.95, contributing majorly to the excellent result CONCLUSIONS Exploiting diverse fields of EMR dataset, the ML-based 30-days adverse cardiac event prediction models performed outstanding, and the applied framework could be generalized for various healthcare prediction models.ts.

2021 ◽  
Vol 8 ◽  
Author(s):  
Ming-Hui Hung ◽  
Ling-Chieh Shih ◽  
Yu-Ching Wang ◽  
Hsin-Bang Leu ◽  
Po-Hsun Huang ◽  
...  

Objective: This study aimed to develop machine learning-based prediction models to predict masked hypertension and masked uncontrolled hypertension using the clinical characteristics of patients at a single outpatient visit.Methods: Data were derived from two cohorts in Taiwan. The first cohort included 970 hypertensive patients recruited from six medical centers between 2004 and 2005, which were split into a training set (n = 679), a validation set (n = 146), and a test set (n = 145) for model development and internal validation. The second cohort included 416 hypertensive patients recruited from a single medical center between 2012 and 2020, which was used for external validation. We used 33 clinical characteristics as candidate variables to develop models based on logistic regression (LR), random forest (RF), eXtreme Gradient Boosting (XGboost), and artificial neural network (ANN).Results: The four models featured high sensitivity and high negative predictive value (NPV) in internal validation (sensitivity = 0.914–1.000; NPV = 0.853–1.000) and external validation (sensitivity = 0.950–1.000; NPV = 0.875–1.000). The RF, XGboost, and ANN models showed much higher area under the receiver operating characteristic curve (AUC) (0.799–0.851 in internal validation, 0.672–0.837 in external validation) than the LR model. Among the models, the RF model, composed of 6 predictor variables, had the best overall performance in both internal and external validation (AUC = 0.851 and 0.837; sensitivity = 1.000 and 1.000; specificity = 0.609 and 0.580; NPV = 1.000 and 1.000; accuracy = 0.766 and 0.721, respectively).Conclusion: An effective machine learning-based predictive model that requires data from a single clinic visit may help to identify masked hypertension and masked uncontrolled hypertension.


Author(s):  
Sooyoung Yoo ◽  
Jinwook Choi ◽  
Borim Ryu ◽  
Seok Kim

Abstract Background Unplanned hospital readmission after discharge reflects low satisfaction and reliability in care and the possibility of potential medical accidents, and is thus indicative of the quality of patient care and the appropriateness of discharge plans. Objectives The purpose of this study was to develop and validate prediction models for all-cause unplanned hospital readmissions within 30 days of discharge, based on a common data model (CDM), which can be applied to multiple institutions for efficient readmission management. Methods Retrospective patient-level prediction models were developed based on clinical data of two tertiary general university hospitals converted into a CDM developed by Observational Medical Outcomes Partnership. Machine learning classification models based on the LASSO logistic regression model, decision tree, AdaBoost, random forest, and gradient boosting machine (GBM) were developed and tested by manipulating a set of CDM variables. An internal 10-fold cross-validation was performed on the target data of the model. To examine its transportability, the model was externally validated. Verification indicators helped evaluate the model performance based on the values of area under the curve (AUC). Results Based on the time interval for outcome prediction, it was confirmed that the prediction model targeting the variables obtained within 30 days of discharge was the most efficient (AUC of 82.75). The external validation showed that the model is transferable, with the combination of various clinical covariates. Above all, the prediction model based on the GBM showed the highest AUC performance of 84.14 ± 0.015 for the Seoul National University Hospital cohort, yielding in 78.33 in external validation. Conclusions This study showed that readmission prediction models developed using machine-learning techniques and CDM can be a useful tool to compare two hospitals in terms of patient-data features.


2019 ◽  
Vol 21 (9) ◽  
pp. 662-669 ◽  
Author(s):  
Junnan Zhao ◽  
Lu Zhu ◽  
Weineng Zhou ◽  
Lingfeng Yin ◽  
Yuchen Wang ◽  
...  

Background: Thrombin is the central protease of the vertebrate blood coagulation cascade, which is closely related to cardiovascular diseases. The inhibitory constant Ki is the most significant property of thrombin inhibitors. Method: This study was carried out to predict Ki values of thrombin inhibitors based on a large data set by using machine learning methods. Taking advantage of finding non-intuitive regularities on high-dimensional datasets, machine learning can be used to build effective predictive models. A total of 6554 descriptors for each compound were collected and an efficient descriptor selection method was chosen to find the appropriate descriptors. Four different methods including multiple linear regression (MLR), K Nearest Neighbors (KNN), Gradient Boosting Regression Tree (GBRT) and Support Vector Machine (SVM) were implemented to build prediction models with these selected descriptors. Results: The SVM model was the best one among these methods with R2=0.84, MSE=0.55 for the training set and R2=0.83, MSE=0.56 for the test set. Several validation methods such as yrandomization test and applicability domain evaluation, were adopted to assess the robustness and generalization ability of the model. The final model shows excellent stability and predictive ability and can be employed for rapid estimation of the inhibitory constant, which is full of help for designing novel thrombin inhibitors.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Toktam Khatibi ◽  
Elham Hanifi ◽  
Mohammad Mehdi Sepehri ◽  
Leila Allahqoli

Abstract Background Stillbirth is defined as fetal loss in pregnancy beyond 28 weeks by WHO. In this study, a machine-learning based method is proposed to predict stillbirth from livebirth and discriminate stillbirth before and during delivery and rank the features. Method A two-step stack ensemble classifier is proposed for classifying the instances into stillbirth and livebirth at the first step and then, classifying stillbirth before delivery from stillbirth during the labor at the second step. The proposed SE has two consecutive layers including the same classifiers. The base classifiers in each layer are decision tree, Gradient boosting classifier, logistics regression, random forest and support vector machines which are trained independently and aggregated based on Vote boosting method. Moreover, a new feature ranking method is proposed in this study based on mean decrease accuracy, Gini Index and model coefficients to find high-ranked features. Results IMAN registry dataset is used in this study considering all births at or beyond 28th gestational week from 2016/04/01 to 2017/01/01 including 1,415,623 live birth and 5502 stillbirth cases. A combination of maternal demographic features, clinical history, fetal properties, delivery descriptors, environmental features, healthcare service provider descriptors and socio-demographic features are considered. The experimental results show that our proposed SE outperforms the compared classifiers with the average accuracy of 90%, sensitivity of 91%, specificity of 88%. The discrimination of the proposed SE is assessed and the average AUC of ±95%, CI of 90.51% ±1.08 and 90% ±1.12 is obtained on training dataset for model development and test dataset for external validation, respectively. The proposed SE is calibrated using isotopic nonparametric calibration method with the score of 0.07. The process is repeated 10,000 times and AUC of SE classifiers using random different training datasets as null distribution. The obtained p-value to assess the specificity of the proposed SE is 0.0126 which shows the significance of the proposed SE. Conclusions Gestational age and fetal height are two most important features for discriminating livebirth from stillbirth. Moreover, hospital, province, delivery main cause, perinatal abnormality, miscarriage number and maternal age are the most important features for classifying stillbirth before and during delivery.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii203-ii203
Author(s):  
Alexander Hulsbergen ◽  
Yu Tung Lo ◽  
Vasileios Kavouridis ◽  
John Phillips ◽  
Timothy Smith ◽  
...  

Abstract INTRODUCTION Survival prediction in brain metastases (BMs) remains challenging. Current prognostic models have been created and validated almost completely with data from patients receiving radiotherapy only, leaving uncertainty about surgical patients. Therefore, the aim of this study was to build and validate a model predicting 6-month survival after BM resection using different machine learning (ML) algorithms. METHODS An institutional database of 1062 patients who underwent resection for BM was split into a 80:20 training and testing set. Seven different ML algorithms were trained and assessed for performance. Moreover, an ensemble model was created incorporating random forest, adaptive boosting, gradient boosting, and logistic regression algorithms. Five-fold cross validation was used for hyperparameter tuning. Model performance was assessed using area under the receiver-operating curve (AUC) and calibration and was compared against the diagnosis-specific graded prognostic assessment (ds-GPA); the most established prognostic model in BMs. RESULTS The ensemble model showed superior performance with an AUC of 0.81 in the hold-out test set, a calibration slope of 1.14, and a calibration intercept of -0.08, outperforming the ds-GPA (AUC 0.68). Patients were stratified into high-, medium- and low-risk groups for death at 6 months; these strata strongly predicted both 6-months and longitudinal overall survival (p &lt; 0.001). CONCLUSIONS We developed and internally validated an ensemble ML model that accurately predicts 6-month survival after neurosurgical resection for BM, outperforms the most established model in the literature, and allows for meaningful risk stratification. Future efforts should focus on external validation of our model.


Author(s):  
Gudipally Chandrashakar

In this article, we used historical time series data up to the current day gold price. In this study of predicting gold price, we consider few correlating factors like silver price, copper price, standard, and poor’s 500 value, dollar-rupee exchange rate, Dow Jones Industrial Average Value. Considering the prices of every correlating factor and gold price data where dates ranging from 2008 January to 2021 February. Few algorithms of machine learning are used to analyze the time-series data are Random Forest Regression, Support Vector Regressor, Linear Regressor, ExtraTrees Regressor and Gradient boosting Regression. While seeing the results the Extra Tree Regressor algorithm gives the predicted value of gold prices more accurately.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Matthijs Blankers ◽  
Louk F. M. van der Post ◽  
Jack J. M. Dekker

Abstract Background Accurate prediction models for whether patients on the verge of a psychiatric criseis need hospitalization are lacking and machine learning methods may help improve the accuracy of psychiatric hospitalization prediction models. In this paper we evaluate the accuracy of ten machine learning algorithms, including the generalized linear model (GLM/logistic regression) to predict psychiatric hospitalization in the first 12 months after a psychiatric crisis care contact. We also evaluate an ensemble model to optimize the accuracy and we explore individual predictors of hospitalization. Methods Data from 2084 patients included in the longitudinal Amsterdam Study of Acute Psychiatry with at least one reported psychiatric crisis care contact were included. Target variable for the prediction models was whether the patient was hospitalized in the 12 months following inclusion. The predictive power of 39 variables related to patients’ socio-demographics, clinical characteristics and previous mental health care contacts was evaluated. The accuracy and area under the receiver operating characteristic curve (AUC) of the machine learning algorithms were compared and we also estimated the relative importance of each predictor variable. The best and least performing algorithms were compared with GLM/logistic regression using net reclassification improvement analysis and the five best performing algorithms were combined in an ensemble model using stacking. Results All models performed above chance level. We found Gradient Boosting to be the best performing algorithm (AUC = 0.774) and K-Nearest Neighbors to be the least performing (AUC = 0.702). The performance of GLM/logistic regression (AUC = 0.76) was slightly above average among the tested algorithms. In a Net Reclassification Improvement analysis Gradient Boosting outperformed GLM/logistic regression by 2.9% and K-Nearest Neighbors by 11.3%. GLM/logistic regression outperformed K-Nearest Neighbors by 8.7%. Nine of the top-10 most important predictor variables were related to previous mental health care use. Conclusions Gradient Boosting led to the highest predictive accuracy and AUC while GLM/logistic regression performed average among the tested algorithms. Although statistically significant, the magnitude of the differences between the machine learning algorithms was in most cases modest. The results show that a predictive accuracy similar to the best performing model can be achieved when combining multiple algorithms in an ensemble model.


2021 ◽  
Author(s):  
Chris J. Kennedy ◽  
Dustin G. Mark ◽  
Jie Huang ◽  
Mark J. van der Laan ◽  
Alan E. Hubbard ◽  
...  

Background: Chest pain is the second leading reason for emergency department (ED) visits and is commonly identified as a leading driver of low-value health care. Accurate identification of patients at low risk of major adverse cardiac events (MACE) is important to improve resource allocation and reduce over-treatment. Objectives: We sought to assess machine learning (ML) methods and electronic health record (EHR) covariate collection for MACE prediction. We aimed to maximize the pool of low-risk patients that are accurately predicted to have less than 0.5% MACE risk and may be eligible for reduced testing. Population Studied: 116,764 adult patients presenting with chest pain in the ED and evaluated for potential acute coronary syndrome (ACS). 60-day MACE rate was 1.9%. Methods: We evaluated ML algorithms (lasso, splines, random forest, extreme gradient boosting, Bayesian additive regression trees) and SuperLearner stacked ensembling. We tuned ML hyperparameters through nested ensembling, and imputed missing values with generalized low-rank models (GLRM). We benchmarked performance to key biomarkers, validated clinical risk scores, decision trees, and logistic regression. We explained the models through variable importance ranking and accumulated local effect visualization. Results: The best discrimination (area under the precision-recall [PR-AUC] and receiver operating characteristic [ROC-AUC] curves) was provided by SuperLearner ensembling (0.148, 0.867), followed by random forest (0.146, 0.862). Logistic regression (0.120, 0.842) and decision trees (0.094, 0.805) exhibited worse discrimination, as did risk scores [HEART (0.064, 0.765), EDACS (0.046, 0.733)] and biomarkers [serum troponin level (0.064, 0.708), electrocardiography (0.047, 0.686)]. The ensemble's risk estimates were miscalibrated by 0.2 percentage points. The ensemble accurately identified 50% of patients to be below a 0.5% 60-day MACE risk threshold. The most important predictors were age, peak troponin, HEART score, EDACS score, and electrocardiogram. GLRM imputation achieved 90% reduction in root mean-squared error compared to median-mode imputation. Conclusion: Use of ML algorithms, combined with broad predictor sets, improved MACE risk prediction compared to simpler alternatives, while providing calibrated predictions and interpretability. Standard risk scores may neglect important health information available in other characteristics and combined in nuanced ways via ML.


Sign in / Sign up

Export Citation Format

Share Document