Deep Learning in mHealth for Chronic Diseases: A Systematic Review (Preprint)

2021 ◽  
Author(s):  
Andreas Triantafyllidis ◽  
Haridimos Kondylakis ◽  
Dimitrios Katehakis ◽  
Angelina Kouroubali ◽  
Lefteris Koumakis ◽  
...  

BACKGROUND Major chronic diseases such as cardiovascular disease, diabetes, and cancer impose a significant burden on people and the healthcare systems around the globe. Recently, Deep Learning (DL) has shown great potential towards the development of intelligent mobile health (mHealth) interventions for chronic diseases which could revolutionize the delivery of healthcare anytime-anywhere. OBJECTIVE To present a systematic review of studies which have used DL based on mHealth data for the diagnosis, prognosis, management, and treatment of major chronic diseases, and advance our understanding of the progress made in this rapidly developing field. METHODS We searched the bibliographic databases of Scopus and PubMed in order to identify papers with focus on the employment of DL algorithms using data captured from mobile devices (e.g., smartphones, smartwatches, and other wearable devices), and targeting cardiovascular disease, diabetes, or cancer. The identified studies were synthesized according to the target disease, the number of enrolled participants and their age, the study period, as well as the employed DL algorithm, the main DL outcome, the dataset used, the features selected, and the achieved performance. RESULTS 20 studies were included in the review. 7 DL studies (35%) targeted cardiovascular disease, 9 studies (45%) targeted diabetes, and 4 studies (20%) targeted cancer. The most common DL outcome was diagnosis of patient condition for the cardiovascular disease studies, prediction of blood glucose values for studies in diabetes, and early detection of cancer. The DL algorithms employed most were convolutional neural networks and recurrent neural networks. The performance of DL was found overall to be satisfactory reaching more than 84% accuracy in the majority of the studies. Almost all studies did not provide details on the explainability of DL outcomes. CONCLUSIONS The use of DL can facilitate the diagnosis, management and treatment of major chronic diseases through harnessing mHealth data. Prospective studies are now required to demonstrate the value of applied DL in real-life mHealth interventions.

Author(s):  
Falk Schwendicke ◽  
Akhilanand Chaurasia ◽  
Lubaina Arsiwala ◽  
Jae-Hong Lee ◽  
Karim Elhennawy ◽  
...  

Abstract Objectives Deep learning (DL) has been increasingly employed for automated landmark detection, e.g., for cephalometric purposes. We performed a systematic review and meta-analysis to assess the accuracy and underlying evidence for DL for cephalometric landmark detection on 2-D and 3-D radiographs. Methods Diagnostic accuracy studies published in 2015-2020 in Medline/Embase/IEEE/arXiv and employing DL for cephalometric landmark detection were identified and extracted by two independent reviewers. Random-effects meta-analysis, subgroup, and meta-regression were performed, and study quality was assessed using QUADAS-2. The review was registered (PROSPERO no. 227498). Data From 321 identified records, 19 studies (published 2017–2020), all employing convolutional neural networks, mainly on 2-D lateral radiographs (n=15), using data from publicly available datasets (n=12) and testing the detection of a mean of 30 (SD: 25; range.: 7–93) landmarks, were included. The reference test was established by two experts (n=11), 1 expert (n=4), 3 experts (n=3), and a set of annotators (n=1). Risk of bias was high, and applicability concerns were detected for most studies, mainly regarding the data selection and reference test conduct. Landmark prediction error centered around a 2-mm error threshold (mean; 95% confidence interval: (–0.581; 95 CI: –1.264 to 0.102 mm)). The proportion of landmarks detected within this 2-mm threshold was 0.799 (0.770 to 0.824). Conclusions DL shows relatively high accuracy for detecting landmarks on cephalometric imagery. The overall body of evidence is consistent but suffers from high risk of bias. Demonstrating robustness and generalizability of DL for landmark detection is needed. Clinical significance Existing DL models show consistent and largely high accuracy for automated detection of cephalometric landmarks. The majority of studies so far focused on 2-D imagery; data on 3-D imagery are sparse, but promising. Future studies should focus on demonstrating generalizability, robustness, and clinical usefulness of DL for this objective.


2021 ◽  
Vol 20 ◽  
pp. 153303382110163
Author(s):  
Danju Huang ◽  
Han Bai ◽  
Li Wang ◽  
Yu Hou ◽  
Lan Li ◽  
...  

With the massive use of computers, the growth and explosion of data has greatly promoted the development of artificial intelligence (AI). The rise of deep learning (DL) algorithms, such as convolutional neural networks (CNN), has provided radiation oncologists with many promising tools that can simplify the complex radiotherapy process in the clinical work of radiation oncology, improve the accuracy and objectivity of diagnosis, and reduce the workload, thus enabling clinicians to spend more time on advanced decision-making tasks. As the development of DL gets closer to clinical practice, radiation oncologists will need to be more familiar with its principles to properly evaluate and use this powerful tool. In this paper, we explain the development and basic concepts of AI and discuss its application in radiation oncology based on different task categories of DL algorithms. This work clarifies the possibility of further development of DL in radiation oncology.


2020 ◽  
Vol 14 ◽  
Author(s):  
Yaqing Zhang ◽  
Jinling Chen ◽  
Jen Hong Tan ◽  
Yuxuan Chen ◽  
Yunyi Chen ◽  
...  

Emotion is the human brain reacting to objective things. In real life, human emotions are complex and changeable, so research into emotion recognition is of great significance in real life applications. Recently, many deep learning and machine learning methods have been widely applied in emotion recognition based on EEG signals. However, the traditional machine learning method has a major disadvantage in that the feature extraction process is usually cumbersome, which relies heavily on human experts. Then, end-to-end deep learning methods emerged as an effective method to address this disadvantage with the help of raw signal features and time-frequency spectrums. Here, we investigated the application of several deep learning models to the research field of EEG-based emotion recognition, including deep neural networks (DNN), convolutional neural networks (CNN), long short-term memory (LSTM), and a hybrid model of CNN and LSTM (CNN-LSTM). The experiments were carried on the well-known DEAP dataset. Experimental results show that the CNN and CNN-LSTM models had high classification performance in EEG-based emotion recognition, and their accurate extraction rate of RAW data reached 90.12 and 94.17%, respectively. The performance of the DNN model was not as accurate as other models, but the training speed was fast. The LSTM model was not as stable as the CNN and CNN-LSTM models. Moreover, with the same number of parameters, the training speed of the LSTM was much slower and it was difficult to achieve convergence. Additional parameter comparison experiments with other models, including epoch, learning rate, and dropout probability, were also conducted in the paper. Comparison results prove that the DNN model converged to optimal with fewer epochs and a higher learning rate. In contrast, the CNN model needed more epochs to learn. As for dropout probability, reducing the parameters by ~50% each time was appropriate.


BMJ Open ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. e035940
Author(s):  
Kelly Palmer ◽  
Patrick Rivers ◽  
Forest Melton ◽  
Jean McClelland ◽  
Jennifer Hatcher ◽  
...  

IntroductionAfrican American adults are disproportionately burdened by chronic diseases, particularly at younger ages. Developing culturally appropriate interventions is paramount to closing the gap in these health inequities. The purpose of this systematic review is to critically evaluate health promotion interventions for African Americans delivered in two environments that are frequented by this population: barbershops and hair salons. Characteristics of effective interventions will be identified and evidence for the effectiveness of these interventions will be provided. Results of this review will inform future health promotion efforts for African Americans particularly focused on the leading health inequities in obesity-related chronic diseases: cardiovascular disease, cancer and type 2 diabetes.Methods and analysisSubject headings and keywords will be used to search for synonyms of ‘barbershops,’ ‘hair salons’ and ‘African Americans’ to identify all relevant articles (from inception onwards) in the following databases: Academic Search Ultimate, Cumulative Index of Nursing and Allied Health Literature, Embase, PsycINFO, PubMed, Web of Science (Science Citation Index and Social Sciences Citation Index) and ProQuest Dissertations. Experimental and quasi-experimental studies for adult (>18 years) African Americans delivered in barbershops and hair salons will be included. Eligible interventions will include risk reduction/management of obesity-related chronic disease: cardiovascular disease, cancer and type 2 diabetes. Two reviewers will independently screen, select and extract data and a third will mediate disagreements. The methodological quality (or risk of bias) of individual studies will be appraised using the Effective Public Health Practice Project Quality Assessment Tool. Quality and content of the evidence will be narratively synthesised.Ethics and disseminationSince this is a protocol for a systematic review, ethical approval is not required. Findings from the review will be widely disseminated through conference presentations, peer-reviewed publications and traditional and social media outlets.


Author(s):  
Shun Otsubo ◽  
Yasutake Takahashi ◽  
Masaki Haruna ◽  
◽  

This paper proposes an automatic driving system based on a combination of modular neural networks processing human driving data. Research on automatic driving vehicles has been actively conducted in recent years. Machine learning techniques are often utilized to realize an automatic driving system capable of imitating human driving operations. Almost all of them adopt a large monolithic learning module, as typified by deep learning. However, it is inefficient to use a monolithic deep learning module to learn human driving operations (accelerating, braking, and steering) using the visual information obtained from a human driving a vehicle. We propose combining a series of modular neural networks that independently learn visual feature quantities, routes, and driving maneuvers from human driving data, thereby imitating human driving operations and efficiently learning a plurality of routes. This paper demonstrates the effectiveness of the proposed method through experiments using a small vehicle.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
I Korsakov ◽  
A Gusev ◽  
T Kuznetsova ◽  
D Gavrilov ◽  
R Novitskiy

Abstract Abstract Background Advances in precision medicine will require an increasingly individualized prognostic evaluation of patients in order to provide the patient with appropriate therapy. The traditional statistical methods of predictive modeling, such as SCORE, PROCAM, and Framingham, according to the European guidelines for the prevention of cardiovascular disease, not adapted for all patients and require significant human involvement in the selection of predictive variables, transformation and imputation of variables. In ROC-analysis for prediction of significant cardiovascular disease (CVD), the areas under the curve for Framingham: 0.62–0.72, for SCORE: 0.66–0.73 and for PROCAM: 0.60–0.69. To improve it, we apply for approaches to predict a CVD event rely on conventional risk factors by machine learning and deep learning models to 10-year CVD event prediction by using longitudinal electronic health record (EHR). Methods For machine learning, we applied logistic regression (LR) and recurrent neural networks with long short-term memory (LSTM) units as a deep learning algorithm. We extract from longitudinal EHR the following features: demographic, vital signs, diagnoses (ICD-10-cm: I21-I22.9: I61-I63.9) and medication. The problem in this step, that near 80 percent of clinical information in EHR is “unstructured” and contains errors and typos. Missing data are important for the correct training process using by deep learning & machine learning algorithm. The study cohort included patients between the ages of 21 to 75 with a dynamic observation window. In total, we got 31517 individuals in the dataset, but only 3652 individuals have all features or missing features values can be easy to impute. Among these 3652 individuals, 29.4% has a CVD, mean age 49.4 years, 68,2% female. Evaluation We randomly divided the dataset into a training and a test set with an 80/20 split. The LR was implemented with Python Scikit-Learn and the LSTM model was implemented with Keras using Tensorflow as the backend. Results We applied machine learning and deep learning models using the same features as traditional risk scale and longitudinal EHR features for CVD prediction, respectively. Machine learning model (LR) achieved an AUROC of 0.74–0.76 and deep learning (LSTM) 0.75–0.76. By using features from EHR logistic regression and deep learning models improved the AUROC to 0.78–0.79. Conclusion The machine learning models outperformed a traditional clinically-used predictive model for CVD risk prediction (i.e. SCORE, PROCAM, and Framingham equations). This approach was used to create a clinical decision support system (CDSS). It uses both traditional risk scales and models based on neural networks. Especially important is the fact that the system can calculate the risks of cardiovascular disease automatically and recalculate immediately after adding new information to the EHR. The results are delivered to the user's personal account.


Author(s):  
Ahlam Wahdan ◽  
Sendeyah AL Hantoobi ◽  
Said A. Salloum ◽  
Khaled Shaalan

Classifying or categorizing texts is the process by which documents are classified into groups by subject, title, author, etc. This paper undertakes a systematic review of the latest research in the field of the classification of Arabic texts. Several machine learning techniques can be used for text classification, but we have focused only on the recent trend of neural network algorithms. In this paper, the concept of classifying texts and classification processes are reviewed. Deep learning techniques in classification and its type are discussed in this paper as well. Neural networks of various types, namely, RNN, CNN, FFNN, and LSTM, are identified as the subject of study. Through systematic study, 12 research papers related to the field of the classification of Arabic texts using neural networks are obtained: for each paper the methodology for each type of neural network and the accuracy ration for each type is determined. The evaluation criteria used in the algorithms of different neural network types and how they play a large role in the highly accurate classification of Arabic texts are discussed. Our results provide some findings regarding how deep learning models can be used to improve text classification research in Arabic language.


Author(s):  
Ekaterina Artemova

AbstractDeep learning is a term used to describe artificial intelligence (AI) technologies. AI deals with how computers can be used to solve complex problems in the same way that humans do. Such technologies as computer vision (CV) and natural language processing (NLP) are distinguished as the largest AI areas. To imitate human vision and the ability to express meaning and feelings through language, deep learning exploits artificial neural networks that are trained on real life evidence.While most vision-related tasks are solved using common methods nearly irrespective of target domains, NLP methods strongly depend on the properties of a given language. Linguistic diversity complicates deep learning for NLP. This chapter focuses on deep learning applications to processing the Russian language.


Sign in / Sign up

Export Citation Format

Share Document