Development and assessment of an accessible communication system for population-based genetic testing: Method/design (Preprint)

2021 ◽  
Author(s):  
Tara Coffin ◽  
Deborah Bowen ◽  
Elizabeth Swisher ◽  
Karen Lu ◽  
Karen Lu ◽  
...  

BACKGROUND Genetic testing uptake is low, despite the well-established connection between pathogenic variants in certain cancer-linked susceptibility genes and ovarian cancer risk. Given that most major insurers cover genetic testing for those with a family history suggestive of hereditary cancer, the issue may lie in access to genetic testing. OBJECTIVE To present the development and formative evaluation of the multi-step online communication system required to support the democratization of genetic testing. METHODS While designing the multi-step online communication system, we considered various barriers and facilitators to genetic testing, guided by Levesque et al.’s dimensions of accessibility. In addition to conducting usability testing, we performed ongoing assessments focusing on function of the online system and participant response rates, with the goal of continuing to make modifications to the online communication system as it is in use. RESULTS The combined approach of usability testing and expert user experience (UX) consultation resulted in several modifications to the multi-step online communication system, including changes that related to imagery and content, web-accessibility, and general organization of the online system. All recommendations were made with the goal of improving the overall accessibility of the online communication system. CONCLUSIONS A multi-step online communication system appears to be an effective way to address many potential barriers to access, which may otherwise make genetic testing difficult for at-risk individuals to participate in. Importantly, some dimensions of access were easy to assess prior to study recruitment opening, but other aspects of the communication system required ongoing assessment during the implementation process of the Making Genetic Testing Accessible (MAGENTA) study.

2013 ◽  
Vol 16 (4) ◽  
pp. 184-191 ◽  
Author(s):  
S.F. Meisel ◽  
L. Side ◽  
L. Fraser ◽  
S. Gessler ◽  
J. Wardle ◽  
...  

2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 560-560 ◽  
Author(s):  
Allison W. Kurian ◽  
Kevin C. Ward ◽  
Paul Abrahamse ◽  
Ann S Hamilton ◽  
Dennis Deapen ◽  
...  

560 Background: Increasing use of germline genetic testing may have unintended consequences on breast cancer treatment. We do not know whether treatment deviates from guidelines for women with pathogenic variants (PV) in cancer susceptibility genes. Methods: SEER data for all women aged ≥20 years, diagnosed with breast cancer in 2014-15 and reported to Georgia and California registries (N = 77,588) by December 1, 2016 were linked to germline genetic testing results from 4 laboratories that did nearly all clinical testing. We examined first course of therapy (before recurrence or progression) of stage < IV patients who linked to a genetic test: bilateral mastectomy (BLM) in candidates for surgery (unilateral, stages 0-III); post-lumpectomy radiation in those with an indication (all but age ≥70, stage I, hormone receptor (HR)-positive and HER2-negative); and chemotherapy in those without a definitive indication (stage I-II, HR-positive, HER2-negative and 21-gene recurrence score < 30). We report the percent treated based on multivariable modeling, adjusted for age, race, stage, grade, insurance and socioeconomic status. Results: The table shows that 9% of patients who linked to a genetic test result had a PV (N = 1,283). Compared to women with negative results,women with BRCA1/2 PVs were more likely to receive BLM, more likely to receive chemotherapy without definitive indication, and less likely to receive indicated radiation in their first course of therapy. Lower-magnitude effects were seen with other PVs but not variants of uncertain significance (VUS). Conclusions: In a population-based setting, women with PVs in BRCA1/2 or other cancer susceptibility genes may have a higher risk of receiving locoregional and systemic treatment that does not follow guidelines. [Table: see text]


2019 ◽  
Vol 37 (15) ◽  
pp. 1305-1315 ◽  
Author(s):  
Allison W. Kurian ◽  
Kevin C. Ward ◽  
Nadia Howlader ◽  
Dennis Deapen ◽  
Ann S. Hamilton ◽  
...  

PURPOSE Genetic testing for cancer risk has expanded rapidly. We examined clinical genetic testing and results among population-based patients with breast and ovarian cancer. METHODS The study included all women 20 years of age or older diagnosed with breast or ovarian cancer in California and Georgia between 2013 and 2014 and reported to the SEER registries covering the entire state populations. SEER data were linked to results from four laboratories that performed nearly all germline cancer genetic testing. Testing use and results were analyzed at the gene level. RESULTS There were 77,085 patients with breast cancer and 6,001 with ovarian cancer. Nearly one quarter of those with breast cancer (24.1%) and one third of those with ovarian cancer (30.9%) had genetic test results. Among patients with ovarian cancer, testing was lower in blacks (21.6%; 95% CI, 18.1% to 25.4%; v whites, 33.8%; 95% CI, 32.3% to 35.3%) and uninsured patients (20.8%; 95% CI, 15.5% to 26.9%; v insured patients, 35.3%; 95% CI, 33.8% to 36.9%). Prevalent pathogenic variants in patients with breast cancer were BRCA1 (3.2%), BRCA2 (3.1%), CHEK 2 (1.6%), PALB2 (1.0%), ATM (0.7%), and NBN (0.4%); in patients with ovarian cancer, prevalent pathogenic variants were BRCA1 (8.7%), BRCA2 (5.8%), CHEK2 (1.4%), BRIP1 (0.9%), MSH2 (0.8%), and ATM (0.6%). Racial/ethnic differences in pathogenic variants included BRCA1 (ovarian cancer: whites, 7.2%; 95% CI, 5.9% to 8.8%; v Hispanics, 16.1%; 95% CI, 11.8% to 21.2%) and CHEK2 (breast cancer: whites, 2.3%; 95% CI, 1.8% to 2.8%; v blacks, 0.1%; 95% CI, 0% to 0.8%). When tested for all genes that current guidelines designate as associated with their cancer type, 7.8% of patients with breast cancer and 14.5% of patients with ovarian cancer had pathogenic variants. CONCLUSION Clinically-tested patients with breast and ovarian cancer in two large, diverse states had 8% to 15% prevalence of actionable pathogenic variants. Substantial testing gaps and disparities among patients with ovarian cancer are targets for improvement.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2192
Author(s):  
Kyung-Sun Park ◽  
Woo-Chang Lee ◽  
Moon-Woo Seong ◽  
Sun-Young Kong ◽  
Kyung-A Lee ◽  
...  

In this study, we performed a comprehensive analysis of BRCA1/2 variants and associated cancer risk in Korean patients considering two aspects: variants of uncertain significance (VUS) and pathogenic or likely pathogenic variants (PLPVs) in BRCA1 and BRCA2. This study included 5433 Korean participants who were tested for BRCA1/2 genes. The BRCA1/2 variants were classified following the standards/guidelines for interpretation of genetic variants and using a multifactorial probability-based approach. In Korea, 15.8% of participants had BRCA1 or BRCA2 PLPVs. To estimate the additional sample numbers needed to resolve unclassified status, we applied a simulation analysis. The simulation study for VUS showed that the smaller the number of samples, the more the posterior probability was affected by the prior probability; in addition, more samples for BRCA2 VUS than those of BRCA1 VUS were required to resolve the unclassified status, and the presence of clinical information associated with their VUS was an important factor. The cumulative lifetime breast cancer risk was 59.1% (95% CI: 44.1–73.6%) for BRCA1 and 58.3% (95% CI: 43.2–73.0%) for BRCA2 carriers. The cumulative lifetime ovarian cancer risk was estimated to be 36.9% (95% CI: 23.4–53.9%) for BRCA1 and 14.9% (95% CI: 7.4–28.5%) for BRCA2 carriers.


2021 ◽  
pp. JCO.20.02785
Author(s):  
Allison W. Kurian ◽  
Kevin C. Ward ◽  
Paul Abrahamse ◽  
Irina Bondarenko ◽  
Ann S. Hamilton ◽  
...  

PURPOSE Genetic testing is important for breast and ovarian cancer risk reduction and treatment, yet little is known about its evolving use. METHODS SEER records of women of age ≥ 20 years diagnosed with breast or ovarian cancer from 2013 to 2017 in California or Georgia were linked to the results of clinical germline testing through 2019. We measured testing trends, rates of variants of uncertain significance (VUS), and pathogenic variants (PVs). RESULTS One quarter (25.2%) of 187,535 patients with breast cancer and one third (34.3%) of 14,689 patients with ovarian cancer were tested; annually, testing increased by 2%, whereas the number of genes tested increased by 28%. The prevalence of test results by gene category for breast cancer cases in 2017 were BRCA1/2 , PVs 5.2%, and VUS 0.8%; breast cancer–associated genes or ovarian cancer–associated genes ( ATM, BARD1, BRIP1, CDH1, CHEK2, EPCAM, MLH1, MSH2, MSH6, NBN, NF1, PALB2, PMS2, PTEN, RAD51C, RAD51D, STK11, and TP53), PVs 3.7%, and VUS 12.0%; other actionable genes ( APC, BMPR1A, MEN1, MUTYH, NF2, RB1, RET, SDHAF2, SDHB, SDHC, SDHD, SMAD4, TSC1, TSC2, and VHL) PVs 0.6%, and VUS 0.5%; and other genes, PVs 0.3%, and VUS 2.6%. For ovarian cancer cases in 2017, the prevalence of test results were BRCA1/2, PVs 11.0%, and VUS 0.9%; breast or ovarian genes, PVs 4.0%, and VUS 12.6%; other actionable genes, PVs 0.7%, and VUS 0.4%; and other genes, PVs 0.3%, and VUS 0.6%. VUS rates doubled over time (2013 diagnoses: 11.2%; 2017 diagnoses: 26.8%), particularly for racial or ethnic minorities (47.8% Asian and 46.0% Black, v 24.6% non-Hispanic White patients; P < .001). CONCLUSION A testing gap persists for patients with ovarian cancer (34.3% tested v nearly all recommended), whereas adding more genes widened a racial or ethnic gap in VUS results. Most PVs were in 20 breast cancer–associated genes or ovarian cancer–associated genes; testing other genes yielded mostly VUS. Quality improvement should focus on testing indicated patients rather than adding more genes.


2019 ◽  
Vol 37 (27_suppl) ◽  
pp. 34-34
Author(s):  
Steven J. Katz ◽  
Monica Morrow ◽  
Allison W. Kurian

34 Background: Increasing use of germline genetic testing may have unintended consequences on breast cancer treatment. We do not know whether treatment deviates from guidelines for women with pathogenic variants (PV) in cancer susceptibility genes. Methods: SEER data for all women aged ≥20 years, diagnosed with breast cancer in 2014-15 and reported to Georgia and California registries (N=77,588) by December 1, 2016 were linked to germline genetic testing results from 4 laboratories that did nearly all clinical testing. We examined first course of therapy of stage <IV patients who linked to a genetic test: bilateral mastectomy (BLM) in candidates for surgery (unilateral, stages 0-III); post-lumpectomy radiation in those with an indication (all but age ≥70, stage I, hormone receptor (HR)-positive and HER2-negative); and chemotherapy in those without definitive indication (stage I-II, HR-positive, HER2-negative and 21-gene recurrence score <30). We report the percent treated based on multivariable modeling, adjusted for age, race, stage, grade, insurance and socioeconomic status. Results: The table shows that 9% of patients who linked to a genetic test result had a PV (N=1,283). Compared to women with negative results, those with BRCA1/2 PVs were more likely to receive BLM, more likely to receive chemotherapy without definitive indication, and less likely to receive indicated radiation as initial treatment. Lower-magnitude effects were seen with other PVs but not variants of uncertain significance (VUS). Conclusions: In a population-based setting, women with PVs in BRCA1/2 or other cancer susceptibility genes may have higher risk of receiving locoregional and systemic treatment that does not follow guidelines. [Table: see text]


2020 ◽  
Author(s):  
Liis Leitsalu ◽  
Marili Palover ◽  
Timo Tõnis Sikka ◽  
Anu Reigo ◽  
Mart Kals ◽  
...  

ABSTRACTGenotype-first approach allows to systematically identify carriers of pathogenic variants in BRCA1/2 genes conferring a high risk of familial breast and ovarian cancer. Participants of the Estonian biobank have expressed support for the disclosure of clinically significant findings. With an Estonian biobank cohort, we applied a genotype-first approach, contacted carriers and offered return of results with genetic counseling. We evaluated participants’ responses to and the clinical utility of the reporting of actionable genetic findings. Twenty-two of 40 contacted carriers of 17 pathogenic BRCA1/2 variants responded and chose to receive results. Eight of these 22 participants qualified for high-risk assessment based on National Comprehensive Cancer Network criteria. Twenty of 21 counseled participants appreciated being contacted. Relatives of 10 participants underwent cascade screening. Five of 16 eligible female BRCA1/2 variant carriers chose to undergo risk-reducing surgery, and 10 adhered to surveillance recommendations over the 30-month follow-up period. We recommend the return of results to population-based biobank participants; this approach could be viewed as a model for population-wide genetic testing. The genotype-first approach permits the identification of individuals at high risk who would not be identified by application of an approach based on personal and family histories only.


BMJ ◽  
2021 ◽  
pp. n214
Author(s):  
Weedon MN ◽  
Jackson L ◽  
Harrison JW ◽  
Ruth KS ◽  
Tyrrell J ◽  
...  

Abstract Objective To determine whether the sensitivity and specificity of SNP chips are adequate for detecting rare pathogenic variants in a clinically unselected population. Design Retrospective, population based diagnostic evaluation. Participants 49 908 people recruited to the UK Biobank with SNP chip and next generation sequencing data, and an additional 21 people who purchased consumer genetic tests and shared their data online via the Personal Genome Project. Main outcome measures Genotyping (that is, identification of the correct DNA base at a specific genomic location) using SNP chips versus sequencing, with results split by frequency of that genotype in the population. Rare pathogenic variants in the BRCA1 and BRCA2 genes were selected as an exemplar for detailed analysis of clinically actionable variants in the UK Biobank, and BRCA related cancers (breast, ovarian, prostate, and pancreatic) were assessed in participants through use of cancer registry data. Results Overall, genotyping using SNP chips performed well compared with sequencing; sensitivity, specificity, positive predictive value, and negative predictive value were all above 99% for 108 574 common variants directly genotyped on the SNP chips and sequenced in the UK Biobank. However, the likelihood of a true positive result decreased dramatically with decreasing variant frequency; for variants that are very rare in the population, with a frequency below 0.001% in UK Biobank, the positive predictive value was very low and only 16% of 4757 heterozygous genotypes from the SNP chips were confirmed with sequencing data. Results were similar for SNP chip data from the Personal Genome Project, and 20/21 individuals analysed had at least one false positive rare pathogenic variant that had been incorrectly genotyped. For pathogenic variants in the BRCA1 and BRCA2 genes, which are individually very rare, the overall performance metrics for the SNP chips versus sequencing in the UK Biobank were: sensitivity 34.6%, specificity 98.3%, positive predictive value 4.2%, and negative predictive value 99.9%. Rates of BRCA related cancers in UK Biobank participants with a positive SNP chip result were similar to those for age matched controls (odds ratio 1.31, 95% confidence interval 0.99 to 1.71) because the vast majority of variants were false positives, whereas sequence positive participants had a significantly increased risk (odds ratio 4.05, 2.72 to 6.03). Conclusions SNP chips are extremely unreliable for genotyping very rare pathogenic variants and should not be used to guide health decisions without validation.


Author(s):  
Emily Breidbart ◽  
Liyong Deng ◽  
Patricia Lanzano ◽  
Xiao Fan ◽  
Jiancheng Guo ◽  
...  

Abstract Objectives There have been few large-scale studies utilizing exome sequencing for genetically undiagnosed maturity onset diabetes of the young (MODY), a monogenic form of diabetes that is under-recognized. We describe a cohort of 160 individuals with suspected monogenic diabetes who were genetically assessed for mutations in genes known to cause MODY. Methods We used a tiered testing approach focusing initially on GCK and HNF1A and then expanding to exome sequencing for those individuals without identified mutations in GCK or HNF1A. The average age of onset of hyperglycemia or diabetes diagnosis was 19 years (median 14 years) with an average HbA1C of 7.1%. Results Sixty (37.5%) probands had heterozygous likely pathogenic/pathogenic variants in one of the MODY genes, 90% of which were in GCK or HNF1A. Less frequently, mutations were identified in PDX1, HNF4A, HNF1B, and KCNJ11. For those probands with available family members, 100% of the variants segregated with diabetes in the family. Cascade genetic testing in families identified 75 additional family members with a familial MODY mutation. Conclusions Our study is one of the largest and most ethnically diverse studies using exome sequencing to assess MODY genes. Tiered testing is an effective strategy to genetically diagnose atypical diabetes, and familial cascade genetic testing identified on average one additional family member with monogenic diabetes for each mutation identified in a proband.


Sign in / Sign up

Export Citation Format

Share Document