The Dissolution Kinetics of Tincal in Phosphoric Acid Solutions

Author(s):  
Yuksel Abali ◽  
Salih U Bayca ◽  
Ayse E Guler

In this study, the dissolution kinetics of tincal in phosphoric acid solutions was investigated. The effects of reaction temperature, acid concentration, solid to liquid ratio, particle size and stirring speed were determined in the experiments. The results showed that the dissolution rate increased with increasing acid concentration, reaction temperature, stirring speed and increased with decreasing particle size and solid to liquid ratio. The dissolution rate was found to be based on the first order pseudo homogenous reaction model. The activation energy of the tincal in phosphoric acid solution was determined as 42.28 kJ.mol-1.

2021 ◽  
Vol 15 (3) ◽  
pp. 395-402
Author(s):  
Nizamettin Demirkıran ◽  
◽  
G. Deniz Turhan Özdemir ◽  

In this paper, the dissolution kinetics of cement copper powder in sulfuric acid solutions containing cupric ions was examined. It was observed that the dissolution rate of copper increased with increasing the acid concentration, temperature, and stirring speed. It was determined that the dissolution rate of copper enhanced with increasing the cupric ion concentration up to 0.025 M. It was found that the temperature and concentration of cupric ion had more considerable effects on the dissolution of copper powder. The kinetic analysis of the process was performed, and it was observed that it fits the first order pseudo-homogenous reaction model. The activation energy was calculated to be 31.1 kJ/mol.


2019 ◽  
Vol 55 (1) ◽  
pp. 9-19
Author(s):  
Olfa Lachkar-Zamouri ◽  
Khemaies Brahim ◽  
Faten Bennour ◽  
Ismail Khattech

A mixture of phosphoric and sulfuric acid was used to investigate the dissolution kinetics of phosphate ore by Differential Reaction Calorimetry (DRC). The effect of the solid-to-iquid ratio, concentration, stirring speed, particle size and temperature of the reaction is examined. It was established that the dissolution rate increased with stirring speed and particle size. However, rising the olid-to-iquid ratio, temperature and concentration decreased the dissolution rate. It was determined that the dissolution rate fits in the first order of the pseudo-homogeneous reaction model. Two negative values of apparent activation energies were found in the range of 25 to 60?C. The experimental data were tested by graphical and statistical methods and it was found that the following models were best fitted for the experimental data and an empirical equation for the process was developed. -ln (1 ? x) = [2,2 E-09((S/L)0.75C -0.461G0.447(SS) 0.471exp (2671/T)]t. T? 40?C -ln (1 ? x) = [2,2 E-09((S/L)0.75C -0.461G0.447(SS) 0.471exp (6959/T)]t. T > 45?C


2011 ◽  
Vol 17 (4) ◽  
pp. 459-468 ◽  
Author(s):  
Rutto Limo ◽  
Christopher Enweremadu

One of the main steps in the wet flue gas desulphurization (WFGD) process is the dissolution of either magnesite or limestone. Evaluating the magnesite dissolution rate is vital for the design and efficient operation of wet FGD plants. A study on the dissolution of magnesite from different sources in South Africa is presented in this work. The effect of reaction temperature (303.15-343.15K), solid-to-liquid ratio (0.5-2.5g/200 ml), particle size (25-125?m), pH (4-6) and HCl concentration (0.5-2.5 mol/l) on the dissolution rate was studied. It was found out that the dissolution reaction follows a shrinking-core model with the chemical reaction control as the rate-controlling step. The dissolution rate increased with an increase in concentration and reaction temperature and with a decrease in particle size and solid-to-liquid ratio. The activation energy of this dissolution process was found to be 45.685 kJ/mol.


2019 ◽  
Vol 4 (7) ◽  
pp. 51-57
Author(s):  
Chukwunonso Chukwuzuloke Okoye ◽  
Okechukwu Dominic Onukwuli ◽  
Chinenye Faith Okey-Onyesolu

Leaching of iron from ilmenite ore using a binary solution (HCl-NaNO3) was investigated. The raw ilmenite ore sample was characterized using Scanning Electron Microscopy (SEM), X-ray diffraction spectroscopy (XRD) and X-ray Flourescence (XRF) techniques. The influence of acid concentration, oxidant concentration, particle size, solution temperature, stirring speed and liquid-to-solid ratios on the extent of dissolution was examined. The experimental data obtained at various process parameter conditions were tested in six kinetics models: shrinking core model’s diffusion through liquid film model(DTLF), diffusion through product layer model (DTPL), surface chemical reaction model (SCR)); mixed kinetics model (MKM), Jander (three dimensional) model and Kröger and Ziegler model. The crystalline morphology of the sample was displayed by the SEM micrograph. XRF result revealed the dominance of titanium and iron in ilmenite while XRD confirmed that ilmenite exist mainly as FeTiO2. The results of the leaching studies showed that ilmenite dissolution in the binary solution increases with increasing acid concentration, oxidant concentration, reaction temperature, stirring speed and liquid-to-solid ratio; while it decreases with particle size. The study showed that 94.77% iron was dissolved by 1MHCl-0.6M NaNO3 at 75μm particle size, 75˚C reaction temperature, 300rpm stirring speed and 30L/g liquid-to-solid ratio. The kinetics of the leaching process was best described by Kröger and Ziegler model with diffusion through the product layer as rate controlling step. The activation energy, Ea, was calculated to be 6.42kJ/mol. The results indicate that HCl-NaNO3 binary solution can be used as an effective lixiviant for extracting iron from ilmenite ores.


2019 ◽  
Vol 51 (2) ◽  
pp. 164-167
Author(s):  
M. Sinirkaya

The dissolution of phosphate ore in dilute phosphoric acid solutions was investigated in both the absence and presence of ultrasound. Acid concentration, reaction temperature and reaction time were chosen as parameters. While the conversion fractions decreased with increasing temperature in dilute phosphoric acid in absence of ultrasound, these rates increased with increasing temperature in the presence of ultrasound. In the experiments, the expected effects of ultrasound were observed, such as decrease in the thickness of the diffusion layer on the solid–liquid interfaces in the suspension, leading to increased surface area.


Author(s):  
İlker Kıpçak ◽  
Mine Özdemir

Abstract In this study, the recovery of boron from the clay waste of boron industry by leaching with sulfuric acid solution was studied in a batch reactor and the subsequent production of boric acid (H3BO3) was investigated. The effects of acid concentration, solid-to-liquid ratio and reaction temperature on the leaching process were examined. Experimental studies were carried out in the ranges of 0.1-1.0 M for acid concentration, 1-10 g/120 mL for solid-to-liquid ratio and 25-75°C for reaction temperature. The analysis of the experimental data showed that the kinetics of the leaching process fitted the Avrami model in the form of X = 1 – exp (–k t n). For the production of boric acid, the optimum leaching conditions were determined as follows: acid concentration, 0.1 M; solid-to-liquid ratio, 6 g/120 mL; reaction temperature, 50°C and reaction time, 60 min. Finally, boric acid was produced in the purity of more than 95% by crystallization of the leach solution.


2019 ◽  
Vol 116 (2) ◽  
pp. 214
Author(s):  
Hongjun Wang ◽  
Yali Feng ◽  
Haoran Li ◽  
Xiangyi Deng ◽  
Jinxing Kang

The dissolution kinetics of vanadium from spent hydroprocessing catalyst was investigated by leaching with sulfuric acid at atmospheric pressure. The effects of stirring speed (400–800 rpm), initial sulfuric acid concentration (0.60–1.20 mol/l) and reaction temperature (373–423 K) on the vanadium dissolution were studied. The results showed that the vanadium dissolution ratio was practically independent of stirring speed at the investigated range, while increasing with the increases of sulfuric acid concentration and reaction temperature. The experimental data agreed quite well with the shrinking core model, with solid membrane diffusion as the rate controlling step. The apparent activation energy was calculated as 11.44 kJ/mol, and the reaction order with respect to sulfuric acid concentrations was determined to be 1.51. The kinetics equation of the leaching process was established as: 1 − 2x/3 − (1 − x)2/3 = 0.067[H2SO4]1.51exp[ − 11563/RT ]t.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Nadeem Raza ◽  
Zafar Iqbal Zafar ◽  
Najam-ul-Haq

Ascorbic acid was used as leaching agent to investigate the dissolution kinetics of natural magnesite ore. The effects of various reaction parameters such as acid concentration, liquid-solid ratio, particle size, stirring speed, and temperature were determined on dissolution kinetics of the magnesite ore. It was found that the dissolution rate increased with increase in acid concentration, liquid-solid ratio, stirring speed, and temperature and decrease in the particle size of the ore. The graphical and statistical methods were applied to analyze the kinetic data, and it was evaluated that the leaching process was controlled by the chemical reaction, that is, . The activation energy of the leaching process was found to be 57.244 kJ mol−1 over the reaction temperature range from 313 to 343 K.


Sign in / Sign up

Export Citation Format

Share Document