The kinetics of vanadium extraction from spent hydroprocessing catalyst by leaching with sulfuric acid at atmospheric pressure

2019 ◽  
Vol 116 (2) ◽  
pp. 214
Author(s):  
Hongjun Wang ◽  
Yali Feng ◽  
Haoran Li ◽  
Xiangyi Deng ◽  
Jinxing Kang

The dissolution kinetics of vanadium from spent hydroprocessing catalyst was investigated by leaching with sulfuric acid at atmospheric pressure. The effects of stirring speed (400–800 rpm), initial sulfuric acid concentration (0.60–1.20 mol/l) and reaction temperature (373–423 K) on the vanadium dissolution were studied. The results showed that the vanadium dissolution ratio was practically independent of stirring speed at the investigated range, while increasing with the increases of sulfuric acid concentration and reaction temperature. The experimental data agreed quite well with the shrinking core model, with solid membrane diffusion as the rate controlling step. The apparent activation energy was calculated as 11.44 kJ/mol, and the reaction order with respect to sulfuric acid concentrations was determined to be 1.51. The kinetics equation of the leaching process was established as: 1 − 2x/3 − (1 − x)2/3 = 0.067[H2SO4]1.51exp[ − 11563/RT ]t.

2021 ◽  
Vol 15 (1) ◽  
pp. 37
Author(s):  
Wahab Wahab ◽  
Erwin Anshari ◽  
Marwan Zam Mili ◽  
WD. Rizky Awaliah Nafiu ◽  
Muh. Nuzul Khaq ◽  
...  

Leaching at atmospheric pressure is one of the leaching methods of concern because it has several advantages, namely that it can process low-level nickel ore, can operate at temperatures >100 ⁰C at atmospheric pressure, and can be used in saprolite and limonite ores. In this research, nickel extraction from nickel laterite ore was carried out using sulfuric acid solution (H2SO4) as a leaching agent. The variables that were varied in the leaching process were temperature (30, 60, and 90 ⁰C), sulfuric acid concentration (0.2, 0.5, and 0.8 molar) and leaching time (30, 60, and 90 minutes). In this study, a 3-factor analysis of variance (ANOVA) was used to see the significance of the variable effects and the order of the most influential variables. In addition, leaching kinetics was studied by shrinking core models to determine rate determining step. The results showed that the increase in temperature, sulfuric acid and leaching time produced a higher percentage of extracted nickel. Based on the 3-factor ANOVA, the order of the most influential variables was obtained, namely temperature, acid concentration and leaching time. The kinetics analysis showed that rate determining step of leaching ore nickel laterite with H2SO4 solution on atmospheric pressure is controlled by diffusion through solid layer product.Keywords: analysis of variance; leaching; saprolit; limonitA B S T R A KLeaching pada tekanan atmosfer adalah salah satu metode pelindian yang menjadi perhatian karena memiliki beberapa keuntungan yaitu dapat mengolah bijih nikel kadar rendah, dapat beroperasi pada temperatur >100 ⁰C pada tekanan atmosfer serta dapat digunakan pada bijih saprolit dan limonit. Dalam penelitian ini, dilakukan ekstraksi nikel dari bijih nikel laterit menggunakan larutan asam sulfat (H2SO4) sebagai agen pelindi. Variabel yang divariasikan dalam proses pelindian yaitu temperatur (30, 60, dan 90 ⁰C), konsentrasi asam sulfat (0,2; 0,5; dan 0,8 molar) dan waktu pelindian (30, 60, dan 90 menit). Dalam penelitian ini digunakan analysis of variance (ANOVA) 3 faktor untuk melihat signifikansi variabel dan urutan variabel yang paling berpengaruh. Selain itu, dilakukan studi kinetika pelindian menggunakan shrinking core model untuk mengetahui pengendali laju reaksi. Hasil penelitian menunjukkan bahwa peningkatan variabel temperatur, konsentrasi asam sulfat dan waktu pelindian menyebabkan meningkatnya persen ekstraksi nikel. Berdasarkan hasil ANOVA 3 faktor diperoleh urutan variabel yang paling berpengaruh yaitu temperatur, konsentrasi asam dan waktu pelindian. Hasil analisis kinetika menunjukkan bahwa pengendali laju reaksi pelindian bijih nikel laterit menggunakan larutan H2SO4 pada tekanan atmosfer yaitu difusi melalui lapisan produk padat.Kata kunci: analysis of variance; pelindian; limonit; saprolit


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1062 ◽  
Author(s):  
Kivanc Korkmaz ◽  
Mahmood Alemrajabi ◽  
Åke Rasmuson ◽  
Kerstin Forsberg

In the present study, the recovery of valuable metals from a Panasonic Prismatic Module 6.5 Ah NiMH 7.2 V plastic casing hybrid electric vehicle (HEV) battery has been investigated, processing the anode and cathode electrodes separately. The study focuses on the recovery of the most valuable compounds, i.e., nickel, cobalt and rare earth elements (REE). Most of the REE (La, Ce, Nd, Pr and Y) were found in the anode active material (33% by mass), whereas only a small amount of Y was found in the cathode material. The electrodes were leached in sulfuric acid and in hydrochloric acid, respectively, under different conditions. The results indicated that the dissolution kinetics of nickel could be slow as a result of slow dissolution kinetics of nickel oxide. At leaching in sulfuric acid, light rare earths were found to reprecipitate increasingly with increasing temperature and sulfuric acid concentration. Following the leaching, the separation of REE from the sulfuric acid leach liquor by precipitation as NaREE (SO4)2·H2O and from the hydrochloric acid leach solution as REE2(C2O4)3·xH2O were investigated. By adding sodium ions, the REE could be precipitated as NaREE (SO4)2·H2O with little loss of Co and Ni. By using a stoichiometric oxalic acid excess of 300%, the REE could be precipitated as oxalates while avoiding nickel and cobalt co-precipitation. By using nanofiltration it was possible to recover hydrochloric acid after leaching the anode material.


Author(s):  
Yuksel Abali ◽  
Salih U Bayca ◽  
Ayse E Guler

In this study, the dissolution kinetics of tincal in phosphoric acid solutions was investigated. The effects of reaction temperature, acid concentration, solid to liquid ratio, particle size and stirring speed were determined in the experiments. The results showed that the dissolution rate increased with increasing acid concentration, reaction temperature, stirring speed and increased with decreasing particle size and solid to liquid ratio. The dissolution rate was found to be based on the first order pseudo homogenous reaction model. The activation energy of the tincal in phosphoric acid solution was determined as 42.28 kJ.mol-1.


2013 ◽  
Vol 634-638 ◽  
pp. 3196-3200
Author(s):  
Kui Liu ◽  
Xue Mei Su

A ferruginous nickel laterite was leached by sulfuric acid at atmospheric pressure. Nickel extraction was largely dependent on sulfuric acid concentration and leaching temperature. Besides these two factors, leaching time and liquid/solid ratio also influenced cobalt extraction significantly. Nickel was easier to be extracted than cobalt. About 95% nickel and cobalt could be extracted when leaching with 5mol/L sulfuric acid for 2h at 100°C, and the acid consumption was 1.417kg H2SO4/kg dry ore.


2011 ◽  
Vol 402 ◽  
pp. 266-271
Author(s):  
Hong Sheng Xu ◽  
Chang Wei ◽  
Cun Xiong Li ◽  
Yan Song ◽  
Zhi Gan Deng ◽  
...  

The present work is concerned with the kinetic study of pressure leaching of zinc silicate ore in sulfuric acid solutions. The effects of leaching temperature, particle size, sulfuric acid concentration and agitation speed on the zinc extraction were evaluated. The results obtained show that the zinc extraction increases with increasing sulfuric acid concentration and leaching temperature. The leaching kinetics was analyzed by using a shrinking core model with diffusion control given by: 1-2/3x-(1-x)2/3=Kt, which represented well the experimental data. The apparent activation energy was determined to be 44.56kJ/mol at temperatures ranging between 80 and 140°C.


2015 ◽  
Vol 1088 ◽  
pp. 434-438
Author(s):  
Wei Chen

A novel polypropylene strong acid cationic exchange fiber (SACEF) was prepared by sulphonation reaction of polypropylene graft styrene (PP-g-St) fiber, using 1,2-dichloroethane as swelling agent. Factors effected the adsorption capacity of SACEF synthesized from PP-g-St fiber, such as swelling time, grafting degree of PP-g-St, liquor ratio (mass of fiber vs. volume of the reaction reagent), reaction temperature, and sulfuric acid concentration were investigated. The results showed that the average adsorption capacity of SACEF was 4.42 mmol·g-1.


2011 ◽  
Vol 366 ◽  
pp. 370-373
Author(s):  
Feng Gao ◽  
Xiang Guang Xu ◽  
Lei Li ◽  
Huai Yu Sun ◽  
Hong Xin Wang

The results of a leaching kinetics study of boron slurry with sulfuric acid were presented. Effect of ore particle size, reaction temperature, and acid concentration on magnesium dissolution rate were determined. The results shown that leaching of about 64.61% of magnesium was achieved using (-200+ 250) mesh ore particle size at a reaction temperature of 60°C for reaction time 100 min with 25% sulfuric acid concentration. Leaching kinetics indicated that diffusion through the product layer was the rate controlling process during the reaction. The reaction activation energy was determined to be about 3.35 kcal/mol, which was characteristic for a diffusion– controlled process.


Sign in / Sign up

Export Citation Format

Share Document