Estimation of Real-Time Equivalent of Power System for Distribution System

Author(s):  
Kasi Viswanadha Raju G ◽  
Pradeep R. Bijwe

Distribution power flow methods by and large consider the substation voltage to be known and fixed. This type of model is not suitable for stressed system conditions. Although some power flow software may allow an equivalent representation of the transmission and sub-transmission system, the procedure for the determination of such an equivalent is not available in literature. Hence, this paper presents a very simple three-phase power system equivalent model, which can be obtained with negligible computational effort from real time measurements, for an unbalanced operating system. The validity of the proposed model is demonstrated through studies for two sample systems.

2021 ◽  
Author(s):  
Amitkumar Dadhania

Large-scale integration of Wind Generators (WGs) with distribution systems is underway right across the globe in a drive to harness green energy. The Doubly Fed Induction Generator (DFIG) is an important type of WG due to its robustness and versatility. Its accurate and efficient modeling is very important in distribution systems planning and analysis studies, as the older approximate representation method (the constant PQ model) is no longer sufficient given the scale of integration of WGs. This thesis proposes a new three-phase model for the DFIG, compatible with unbalanced three-phase distribution systems, by deriving an analytical representation of its three major components, namely the wind turbine, the voltage source converter, and the wound-rotor induction machine. The proposed model has a set of nonlinear equations that yields the total three-phase active and reactive powers injected into the grid by the DFIG as a function of the grid voltage and wind turbine parameters. This proposed model is integrated with a three-phased unbalanced power flow method and reported in this thesis. The proposed method opens up a new way to conduct power flow studies on unbalanced distribution systems with WGs. The proposed DFIG model is verified using Matlab-Simulink. IEEE 37-bus test system data from the IEEE Distribution System sub-committee is used to benchmark the results of the power flow method.


2021 ◽  
Author(s):  
Amitkumar Dadhania

Large-scale integration of Wind Generators (WGs) with distribution systems is underway right across the globe in a drive to harness green energy. The Doubly Fed Induction Generator (DFIG) is an important type of WG due to its robustness and versatility. Its accurate and efficient modeling is very important in distribution systems planning and analysis studies, as the older approximate representation method (the constant PQ model) is no longer sufficient given the scale of integration of WGs. This thesis proposes a new three-phase model for the DFIG, compatible with unbalanced three-phase distribution systems, by deriving an analytical representation of its three major components, namely the wind turbine, the voltage source converter, and the wound-rotor induction machine. The proposed model has a set of nonlinear equations that yields the total three-phase active and reactive powers injected into the grid by the DFIG as a function of the grid voltage and wind turbine parameters. This proposed model is integrated with a three-phased unbalanced power flow method and reported in this thesis. The proposed method opens up a new way to conduct power flow studies on unbalanced distribution systems with WGs. The proposed DFIG model is verified using Matlab-Simulink. IEEE 37-bus test system data from the IEEE Distribution System sub-committee is used to benchmark the results of the power flow method.


2021 ◽  
Author(s):  
Evangelos Pompodakis ◽  
Georgios C. Kryonidis ◽  
Minas Alexiadis

<p>This paper presents a comprehensive three-bus equivalent circuit model of three-phase step voltage regulators. The proposed model can be efficiently integrated in the Z-bus power flow method and can accurately simulate any configuration of step voltage regulators. In contrast to the conventional step voltage regulator models that include the tap variables inside the Y<sub>BUS</sub> matrix of the network, the proposed model simulates them in the form of current sources, outside the Y<sub>BUS</sub> matrix. As a result, the re-factorization of the Y<sub>BUS</sub> matrix is avoided after every tap change reducing significantly the computational burden of the power flow. Furthermore, possible convergence issues caused by the low impedance of step voltage regulators are addressed by introducing fictitious impedances, without, however, affecting the accuracy of the model. The results of the proposed step voltage regulator model are compared against well-known commercial softwares such as Simulink and OpenDSS using the IEEE 4-Bus and an 8-Bus network. According to the simulations, the proposed model outputs almost identical results with Simulink and OpenDSS confirming its high accuracy. Furthermore, the proposed 3-bus equivalent model is compared against a recently published conventional step voltage regulator model in the IEEE 8500-Node test feeder. Simulation results indicate that the proposed step voltage regulator model produces as accurate results as the conventional one, while its computation time is significantly lower. More specifically, in the large IEEE 8500-node network consisting of four SVRs, the proposed model can reduce the computation time of power flow around one minute for every tap variation. Therefore, the proposed step voltage regulator model can constitute an efficient simulation tool in applications where subsequent tap variations are required. </p>


2021 ◽  
Vol 19 ◽  
pp. 277-288
Author(s):  
Osama Elbaksawi

This research presents the proposed model, to control the power flow in the transmission power system by applying Unified Power Flow Controller (UPFC), STATCOM and two 3-level 48-puls converter. This hybrid has been used to improve performance and reduce the maximum over shoot which is obtained from proposed model when the fault is occurring or suddenly system changes. The behavior of the system is analyzed under different three cases. The first case, the model is applied to plus load at bus 3. The second case, the model is operating at normal work and the third case, the three phase fault is occurred at bus4. In this research, the performance of system is studied under applied all cases of the current, voltage and power for the system. The numerical results of the proposed model are introduced to show the maximum over shoot and RMS values after applied proposed control at three different cases to prove the suggested model gave a good performance especially, during three phases fault and after fault clearance.


Author(s):  
Sunny Katyara ◽  
Lukasz Staszewski ◽  
Faheem Akhtar Chachar

Background: Since the distribution networks are passive until Distributed Generation (DG) is not being installed into them, the stability issues occur in the distribution system after the integration of DG. Methods: In order to assure the simplicity during the calculations, many approximations have been proposed for finding the system’s parameters i.e. Voltage, active and reactive powers and load angle, more efficiently and accurately. This research presents an algorithm for finding the Norton’s equivalent model of distribution system with DG, considering from receiving end. Norton’s model of distribution system can be determined either from its complete configuration or through an algorithm using system’s voltage and current profiles. The algorithm involves the determination of derivative of apparent power against the current (dS/dIL) of the system. Results: This work also verifies the accuracy of proposed algorithm according to the relative variations in the phase angle of system’s impedance. This research also considers the varying states of distribution system due to switching in and out of DG and therefore Norton’s model needs to be updated accordingly. Conclusion: The efficacy of the proposed algorithm is verified through MATLAB simulation results under two scenarios, (i) normal condition and (ii) faulty condition. During normal condition, the stability factor near to 1 and change in dS/dIL was near to 0 while during fault condition, the stability factor was higher than 1 and the value of dS/dIL was away from 0.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3843
Author(s):  
Sultan Sh. Alanzi ◽  
Rashad M. Kamel

This paper investigates the maximum photovoltaic (PV) penetration limits on both overhead lines and underground cables medium voltage radial distribution system. The maximum PV penetration limit is estimated considering both bus voltage limit (1.05 p.u.) and feeder current ampacity (1 p.u.). All factors affect the max PV penetration limit are investigated in detail. Substation voltage, load percentage, load power factor, and power system frequency (50 Hz or 60 Hz) are analyzed. The maximum PV penetration limit associated with overhead lines is usually higher than the value associated with the underground cables for high substation voltage (substation voltage = 1.05 and 1.04 p.u.). The maximum PV penetration limit decreases dramatically with low load percentage for both feeder types but still the overhead lines accept PV plant higher than the underground cables. Conversely, the maximum PV penetration increases with load power factor decreasing and the overhead lines capability for hosting PV plant remains higher than the capability of the underground cables. This paper proved that the capability of the 60-Hz power system for hosting the PV plant is higher than the capability of 50 Hz power system. MATLAB software has been employed to obtain all results in this paper. The Newton-Raphson iterative method was the used method to solve the power flow of the investigated systems.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3442
Author(s):  
Fábio Retorta ◽  
João Aguiar ◽  
Igor Rezende ◽  
José Villar ◽  
Bernardo Silva

This paper proposes a near to real-time local market to provide reactive power to the transmission system operator (TSO), using the resources connected to a distribution grid managed by a distribution system operator (DSO). The TSO publishes a requested reactive power profile at the TSO-DSO interface for each time-interval of the next delivery period, so that market agents (managing resources of the distribution grid) can prepare and send their bids accordingly. DSO resources are the first to be mobilized, and the remaining residual reactive power is supplied by the reactive power flexibility offered in the local reactive market. Complex bids (with non-curtailability conditions) are supported to provide flexible ways of bidding fewer flexible assets (such as capacitor banks). An alternating current (AC) optimal power flow (OPF) is used to clear the bids by maximizing the social welfare to supply the TSO required reactive power profile, subject to the DSO grid constraints. A rolling window mechanism allows a continuous dispatching of reactive power, and the possibility of adapting assigned schedules to real time constraints. A simplified TSO-DSO cost assignment of the flexible reactive power used is proposed to share for settlement purposes.


2012 ◽  
Vol 590 ◽  
pp. 195-200
Author(s):  
Meng Jen Chen ◽  
Yu Chi Wu ◽  
Wen Shiush Chen ◽  
Pei Wei Huang ◽  
Tsung Wei Tsai

In this paper, a framework for integrating a real-time digital simulator and EMS-OPF program is proposed and addressed, through two different communication architectures: asynchronous and synchronous. Validation of these communication architectures is carried out by Ethernet UDP/IP (asynchronous) and analog channels of IO card (synchronous). With this framework, both dynamic and steady-state performance of a power system can be studied easily in real-time mode.


Sign in / Sign up

Export Citation Format

Share Document