Heterogeneous Model of the Process of Clavulanic Acid Purification by Ionic Exchange in a Fixed-Bed Column

2011 ◽  
Vol 6 (1) ◽  
Author(s):  
Maressa Cuel ◽  
Marlei Barboza ◽  
Carlos Hokka ◽  
Wu Kwong

The main factors that influence the adsorption process were studied by means of numerical simulation, based on experimental data of the rupture curve of an adsorption column employed in the purification of clavulanic acid with Amberlite IRA-400 ion-exchange resin. Starting from a heterogeneous model that describes fixed bed adsorption, three important process parameters were determined and evaluated: the degradation constant inside the pores of the resin, the global mass transfer coefficient, and the axial dispersion coefficient. The model was adjusted to the experimental data of an absorption column operating with clavulanic acid feed concentrations of 100.0; 114.0 and 122.0 mg/L, pH 6.2, at a temperature of 10°C. The results confirmed the good adjustment of the numerical simulation to the experimental data.

2020 ◽  
Vol 85 (7) ◽  
pp. 953-965
Author(s):  
Saurabh Meshram ◽  
Chandrakant Thakur ◽  
Anupam Soni

Battery recycling generates large amount of effluent which contains the toxic Pb(II) beyond the permissible limit. This effluent was treated for the removal of Pb(II) by fixed bed adsorption onto steam-activated granular carbon. Effect of flow rate, bed diameter and bed height on the performance of fixed bed column was investigated. The experimental data was presented in the form of breakthrough curve. Bed exhaustion time, breakthrough time and adsorbent capacity were determined. The obtained experimental data were evaluated with the four kinetic models: Thomas, Yoon?Nelson, Adams?Bohart and Clark model. The data were fitted well to the Thomas, Yoon?Nelson and Clark model with correlation coefficient R2 > 0.96.


2001 ◽  
Vol 66 (7) ◽  
pp. 463-475 ◽  
Author(s):  
L. Markovska ◽  
V. Meshko ◽  
V. Noveski ◽  
M. Marinkovski

The adsorption of basic dyes from aqueous solutions onto granular activated carbon and natural zeolite was studied using a fixed bed column. The design procedures for fixed bed adsorption columns were investigated for two basic dyes Maxilon Goldgelb GL EC 400 % (MG-400) and Maxilon Schwarz FBL-01 300 % (MS-300). Acomputer program based on the solid diffusion control model has been developed. The model parameters: solid diffusion coefficient, DS, axial dispersion coefficient, DL and external mass transfer coefficient, kf for all the investigated systems were estimated by means of a best fit approach.


2015 ◽  
Vol 13 (3) ◽  
pp. 790-800 ◽  
Author(s):  
Zahra Saadi ◽  
Reyhaneh Saadi ◽  
Reza Fazaeli

In the present study, the removal of metal ions Pb(II) using nanostructured γ-alumina was investigated by tests on batch operations and fixed-bed columns. Optimization was determined for factors effective on adsorption such as pH, contact time of metal solution with adsorbent and initial solution concentration. The optimum pH level was determined at 4.5 and the maximum adsorption percentage was achieved at 150 minutes. pHpzc was measured 8.3 for nanostructured γ-Al2O3. The Langmuir, Freundlich and Temkin isotherms were used to analyze the experimental data. The Langmuir isotherm model showed the best agreement with the experimental data. The model showed evaluations for maximum adsorption capacity of adsorbent at 119.04 mg/g and adsorbent bed performance for different flow rates, bed heights and influent concentrations were also investigated. The lumped method was used to solve the bed equations, to predict the breakthrough curve and model overall mass transfer coefficient (Koverall) and axial dispersion coefficient (Dz) parameters to make comparisons with experimental results.


2009 ◽  
Vol 9 (6) ◽  
pp. 661-670 ◽  
Author(s):  
S. P. Dubey ◽  
K. Gopal

The activated carbon of Eucalyptus globulus was tested for their effectiveness in removing hexavalent chromium from aqueous solution using column experiments. Result revealed that adsorption of chromium(VI) on eucalyptus bark carbon was endothermic in nature. Thermodynamic parameters such as the entropy change, enthalpy change and Gibbs free energy change were found to be 1.39 kJ mol−1 K−1, 1.08 kJ mol−1 and −3.85 kJ mol−1, respectively. Different chromium concentrations were used for the fixed bed adsorption studies. The pre- and post-treated adsorbents were characterized using a FTIR spectroscopic technique. It was concluded that Eucalyptus bark carbon column could be used effectively for removal of hexavalent chromium from aqueous solution at optimal column conditions. This study showed that this biological material is potential adsorbent of Cr(VI) from water.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shazia Perveen ◽  
Raziya Nadeem ◽  
Shaukat Ali ◽  
Yasir Jamil

Abstract Biochar caged zirconium ferrite (BC-ZrFe2O5) nanocomposites were fabricated and their adsorption capacity for Reactive Blue 19 (RB19) dye was evaluated in a fixed-bed column and batch sorption mode. The adsorption of dye onto BC-ZrFe2O5 NCs followed pseudo-second-order kinetics (R 2 = 0.998) and among isotherms, the experimental data was best fitted to Sips model as compared to Freundlich and Langmuir isotherms models. The influence of flow-rate (3–5 mL min−1), inlet RB19 dye concentration (20–100 mg L−1) and quantity of BC-ZrFe2O5 NCs (0.5–1.5 g) on fixed-bed sorption was elucidated by Box-Behnken experimental design. The saturation times (C t /C o  = 0.95) and breakthrough (C t /C o  = 0.05) were higher at lower flow-rates and higher dose of BC-ZrFe2O5 NCs. The saturation times decreased, but breakthrough was increased with the initial RB19 dye concentration. The treated volume was higher at low sorbent dose and influent concentration. Fractional bed utilization (FBU) increased with RB19 dye concentration and flow rates at low dose of BC-ZrFe2O5 NCs. Yan model was fitted best to breakthrough curves data as compared to Bohart-Adams and Thomas models. Results revealed that BC-ZrFe2O5 nanocomposite has promising adsorption efficiency and could be used for the adsorption of dyes from textile effluents.


2021 ◽  
Vol 22 ◽  
pp. 100868
Author(s):  
Ghita El mouhri ◽  
Mohammed Merzouki ◽  
Rabie Kachkoul ◽  
Hajar Belhassan ◽  
Youssef Miyah ◽  
...  

2021 ◽  
Vol 42 ◽  
pp. 102117
Author(s):  
Heloisa Pereira de Sá Costa ◽  
Meuris Gurgel Carlos da Silva ◽  
Melissa Gurgel Adeodato Vieira

Sign in / Sign up

Export Citation Format

Share Document