Nanosheet Coating Process

2014 ◽  
Vol 83 (2) ◽  
pp. 95-99
Author(s):  
Minoru OSADA ◽  
Takayoshi SASAKI
Keyword(s):  
TAPPI Journal ◽  
2013 ◽  
Vol 12 (4) ◽  
pp. 19-27
Author(s):  
PATRICK HUBER ◽  
LAURENT LYANNAZ ◽  
BRUNO CARRÉ

The fraction of deinked pulp for coated paper production is continually increasing, with some mills using 100% deinked pulp for the base paper. The brightness of the coated paper made from deinked pulp may be reached through a combination of more or less extensive deinking, compensated by appropriate coating, to optimize costs overall. The authors proposed general optimization methods combined with Kubelka-Munk multilayer calculations to find the most economical combination of deinking and coating process that would produce a coated paper made from DIP, at a given target brightness, while maintaining mechanical properties.


TAPPI Journal ◽  
2011 ◽  
Vol 10 (9) ◽  
pp. 17-23 ◽  
Author(s):  
ANNE RUTANEN ◽  
MARTTI TOIVAKKA

Coating color stability, as defined by changes in its solid particle fraction, is important for runnability, quality, and costs of a paper coating operation. This study sought to determine whether the size or density of particles is important in size segregation in a pigment coating process. We used a laboratory coater to study changes in coating color composition during coating operations. The results suggest that size segregation occurs for high and low density particles. Regardless of the particle density, the fine particle size fraction (<0.2 μm) was the most prone for depletion, causing an increase in the average size of the particles. Strong interactions between the fine particles and other components also were associated with a low depletion tendency of fine particles. A stable process and improved efficiency of fine particles and binders can be achieved by controlling the depletion of fine particles.


2021 ◽  
Vol 57 (4) ◽  
pp. 333-342
Author(s):  
Trung Huu Nguyen ◽  
Tran Nguyen Minh An ◽  
Mahboob Alam ◽  
Duc Hoai Tran ◽  
Nghi Tran ◽  
...  

The goal of the research is to develop an experimental mathematical model of pan coating process effect on the biodegradable polymer and to determine optimal process parameters. The polymer solution was conducted with phosphated di-starch phosphate, polyvinyl alcohol, and polyacrylic acid and performed as material coating for the controlled-release urea fertilizer. The image analysis method has been used to determine the particle size distribution, Sauter mean diameter of the particle and layer thickness that is novel. The central composite rotatable design has been selected to determine the regression models of the process, which described the relationship between two objective variables as layer thickness, release time with angle of pan, spray flow, and coating time. The statistical analysis results indicate the fitness of model.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Ruud P. van Hove ◽  
Inger N. Sierevelt ◽  
Barend J. van Royen ◽  
Peter A. Nolte

Surfaces of medical implants can be enhanced with the favorable properties of titanium-nitride (TiN). In a review of English medical literature, the effects of TiN-coating on orthopaedic implant material in preclinical studies were identified and the influence of these effects on the clinical outcome of TiN-coated orthopaedic implants was explored. The TiN-coating has a positive effect on the biocompatibility and tribological properties of implant surfaces; however, there are several reports of third body wear due to delamination, increased ultrahigh molecular weight polyethylene wear, and cohesive failure of the TiN-coating. This might be due to the coating process. The TiN-coating process should be optimized and standardized for titanium alloy articulating surfaces. The clinical benefit of TiN-coating of CoCrMo knee implant surfaces should be further investigated.


Sign in / Sign up

Export Citation Format

Share Document