scholarly journals Quantitative evaluation of mechanical properties of the natural rock joints for analyzing behavior of structures in discontinuous rock masses.

1999 ◽  
pp. 231-243 ◽  
Author(s):  
Yujing JIANG ◽  
Mitsuo NAKAGAWA ◽  
Tetsuro ESAKI
2015 ◽  
Vol 723 ◽  
pp. 317-321 ◽  
Author(s):  
Lei Xu ◽  
Qing Wen Ren

Infilling rock joints widely exist in natural rock masses, and the shear failure of infilling rock joints plays an important role in the instability of rock masses. In order to study the shear failure mechanism of infilling rock joints, Particle Flow Code is used to simulate the direct shear test of infilling rock joints. The PFC models with different infilling thickness are established firstly, and then the procedures of PFC simulation are described. In the end, the shear failure process of infilling rock joints with different infilling thickness is simulated. Based on the PFC simulation results, it can be concluded that the shear failure mode changes with increasing infilling thickness, and the shearing of the infilling rock joint rarely gives birth to microcracks in rock due to the existence of the infilling material.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 779
Author(s):  
Mohamed Gomah ◽  
Guichen Li ◽  
Salah Bader ◽  
Mohamed Elkarmoty ◽  
Mohamed Ismael

The awareness of the impact of high temperatures on rock properties is essential to the design of deep geotechnical applications. The purpose of this research is to assess the influence of heating and cooling treatments on the physical and mechanical properties of Egyptian granodiorite as a degrading factor. The samples were heated to various temperatures (200, 400, 600, and 800 °C) and then cooled at different rates, either slowly cooled in the oven and air or quickly cooled in water. The porosity, water absorption, P-wave velocity, tensile strength, failure mode, and associated microstructural alterations due to thermal effect have been studied. The study revealed that the granodiorite has a slight drop in tensile strength, up to 400 °C, for slow cooling routes and that most of the physical attributes are comparable to natural rock. Despite this, granodiorite thermal deterioration is substantially higher for quick cooling than for slow cooling. Between 400:600 °C is ‘the transitional stage’, where the physical and mechanical characteristics degraded exponentially for all cooling pathways. Independent of the cooling method, the granodiorite showed a ductile failure mode associated with reduced peak tensile strengths. Additionally, the microstructure altered from predominantly intergranular cracking to more trans-granular cracking at 600 °C. The integrity of the granodiorite structure was compromised at 800 °C, the physical parameters deteriorated, and the rock tensile strength was negligible. In this research, the temperatures of 400, 600, and 800 °C were remarked to be typical of three divergent phases of granodiorite mechanical and physical properties evolution. Furthermore, 400 °C could be considered as the threshold limit for Egyptian granodiorite physical and mechanical properties for typical thermal underground applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Longxiao Chen ◽  
Kesheng Li ◽  
Guilei Song ◽  
Deng Zhang ◽  
Chuanxiao Liu

AbstractRock deterioration under freeze–thaw cycles is a concern for in-service tunnel in cold regions. Previous studies focused on the change of rock mechanical properties under unidirectional stress, but the natural rock mass is under three dimensional stresses. This paper investigates influences of the number of freeze–thaw cycle on sandstone under low confining pressure. Twelve sandstone samples were tested subjected to triaxial compression. Additionally, the damage characteristics of sandstone internal microstructure were obtained by using acoustic emission (AE) and mercury intrusion porosimetry. Results indicated that the mechanical properties of sandstone were significantly reduced by freeze–thaw effect. Sandstone’ peak strength and elastic modulus were 7.28–37.96% and 6.38–40.87% less than for the control, respectively. The proportion of super-large pore and large pore in sandstone increased by 19.53–81.19%. We attributed the reduced sandstone’ mechanical properties to the degenerated sandstone microstructure, which, in turn, was associated with increased sandstone macropores. The macroscopic failure pattern of sandstone changed from splitting failure to shear failure with an increasing of freeze–thaw cycles. Moreover, the activity of AE signal increased at each stage, and the cumulative ringing count also showed upward trend with the increase of freeze–thaw number.


PLoS ONE ◽  
2014 ◽  
Vol 9 (11) ◽  
pp. e112391 ◽  
Author(s):  
Kyoko Yoshida ◽  
Hongfeng Jiang ◽  
MiJung Kim ◽  
Joy Vink ◽  
Serge Cremers ◽  
...  

1986 ◽  
Vol 13 (13) ◽  
pp. 1430-1433 ◽  
Author(s):  
Stephen R. Brown ◽  
Robert L. Kranz ◽  
Brian P. Bonner
Keyword(s):  

2010 ◽  
Vol 02 (03n04) ◽  
pp. 217-234
Author(s):  
IOANNIS STEFANOU ◽  
JEAN SULEM

The behavior of rock masses is influenced by the existence of discontinuities, which divide the rock in joint blocks making it an inhomogeneous anisotropic material. From the mechanical point of view, the geometrical and mechanical properties of the rock discontinuities define the mechanical properties of the rock structure. In the present paper we consider a rock mass with three joint sets of different dip angle, dip direction, spacing and mechanical properties. The dynamic behavior of the discrete system is then described by a continuum model, which is derived by homogenization. The homogenization technique applied here is called generalized differential expansion homogenization technique and has its roots in Germain's (1973) formulation for micromorphic continua. The main advantage of the method is the avoidance of the averaging of the kinematic quotients and the derivation of a continuum that maps exactly the degrees of freedom of the discrete system through a one-to-one correspondence of the kinematic measures. The derivation of the equivalent continuum is based on the identification for any virtual kinematic field of the power of the internal forces and of the kinetic energy of the continuum with the corresponding quantities of the discrete system. The result is an anisotropic three-dimensional Cosserat continuum.


Sign in / Sign up

Export Citation Format

Share Document