Shear Failure Mechanism of Infilling Rock Joints and its PFC Simulation

2015 ◽  
Vol 723 ◽  
pp. 317-321 ◽  
Author(s):  
Lei Xu ◽  
Qing Wen Ren

Infilling rock joints widely exist in natural rock masses, and the shear failure of infilling rock joints plays an important role in the instability of rock masses. In order to study the shear failure mechanism of infilling rock joints, Particle Flow Code is used to simulate the direct shear test of infilling rock joints. The PFC models with different infilling thickness are established firstly, and then the procedures of PFC simulation are described. In the end, the shear failure process of infilling rock joints with different infilling thickness is simulated. Based on the PFC simulation results, it can be concluded that the shear failure mode changes with increasing infilling thickness, and the shearing of the infilling rock joint rarely gives birth to microcracks in rock due to the existence of the infilling material.

2020 ◽  
Vol 12 (13) ◽  
pp. 5426
Author(s):  
Donghui Chen ◽  
Huie Chen ◽  
Wen Zhang ◽  
Chun Tan ◽  
Zhifa Ma ◽  
...  

The failure mechanism analysis of dam foundations is key for designing hydropower stations. This study analyses the rock masses in a sluice section, which is an important part of the main dam of the Datengxia Hydropower Station currently built in China. The stability of the sluice rock masses is predominantly affected by gentle through-going soft interlayers and steep structural fractures. Its foundation failure mechanism is investigated by means of a numerical method, i.e., Universal Distinct Element Code (UDEC) and the geomechanical model method. The modeling principle and process, and results for the rock dam foundation are introduced and generated by using the abovementioned two methods. The results indicate that the failure mechanism of the foundation rock masses, as characterized by gentle through-going and steep structural discontinuities, is not a conventional type of shear failure mechanism but a buckling one. This type of failure mechanism is verified by analyzing the deformation features resulting from the overloading of both methods and strength reduction of the numerical method.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Tao Yang ◽  
Yunkang Rao ◽  
Huailin Chen ◽  
Bing Yang ◽  
Jiangrong Hou ◽  
...  

Understanding the failure mechanism and failure modes of multiface slopes in the Wenchuan earthquake can provide a scientific guideline for the slope seismic design. In this paper, the two-dimensional particle flow code (PFC2D) and shaking table tests are used to study the failure mechanism of multiface slopes. The results show that the failure modes of slopes with different moisture content are different under seismic loads. The failure modes of slopes with the moisture content of 5%, 8%, and 12% are shattering-shallow slip, tension-shear slip, and shattering-collapse slip, respectively. The failure mechanism of slopes with different water content is different. In the initial stage of vibration, the slope with 5% moisture content produces tensile cracks on the upper surface of the slope; local shear slip occurs at the foot of the slope and develops rapidly; however, a tensile failure finally occurs. In the slope with 8% moisture content, local shear cracks first develop and then are connected into the slip plane, leading to the formation of the unstable slope. A fracture network first forms in the slope with 12% moisture content under the shear action; uneven dislocation then occurs in the slope during vibration; the whole instability failure finally occurs. In the case of low moisture content, the tensile crack plays a leading role in the failure of the slope. But the influence of shear failure becomes greater with the increase of the moisture content.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Yingchun Li ◽  
Shengyue Sun ◽  
Hongwei Yang

The scale dependence of surface roughness is critical in characterising the hydromechanical properties of field-scale rock joints but is still not well understood, particularly when different orders of roughness are considered. We experimentally reveal the scale dependence of two-order roughness, i.e., waviness and unevenness through fractal parameters using the triangular prism surface area method (TPM). The surfaces of three natural joints of granite with the same dimension of 1000 mm×1000 mm are digitised using a 3D laser scanner at three different measurement resolutions. Waviness and unevenness are quantitatively separated by considering the area variation of joint surface as grid size changes. The corresponding fractal dimensions of waviness and unevenness in sampling window sizes ranging from 100 mm×100 mm to 1000 mm×1000 mm at an interval of 100 mm×100 mm are determined. We find that both the fractal dimensions of waviness and unevenness vary as the window size increases. No obvious stationarity threshold has been found for the three rock joint samples, indicating the surface roughness of natural rock joints should be quantified at the scale of the rock mass in the field.


Author(s):  
Ximei Zhai ◽  
Wenjian Ying ◽  
Wang Xueming

In order to ensure desirable overall performance between interior panel and exterior panel for precast concrete sandwich panels, the shear performance of a new composite connector is investigated in this paper through the experiment of shear specimens, including 4 groups of bilateral shear test specimens and 8 groups of unilateral shear test specimens. The connector’s shear capability and shear failure process phenomenon of destruction of all specimens are obtained. Then the effect rule on shear performance of connector from positional relation of connector and distribution reinforcement and concrete strength are gained. The experimental results and analysis show that the shear failure model is bending shear failure of connector’s reinforcing steel bar, which is brittle failure; the measured value of shear force of experiment compared to the measures values for the actual project, the new composite connector provides an enough safety reserve; The relative position of connector and distribution reinforcement and concrete strength have no influence on the ultimate bearing shear capability; The shear performance of the new composite connector could satisfy the use requirement of sandwich wall panels based on the text results. Furthermore, the connectors perform superb anchoring bond and deformation capability. According to the results and analysis, the new composite connector could be popularly used in engineering practice.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Minghui Ma ◽  
Fenhua Ren ◽  
Wensheng Liu

There are a large number of discontinuous weak planes distributed in the natural rock mass, which makes the sliding failure of rock mass along the intermittent structural plane very complex. To investigate the shear failure mechanism of rock mass with intermittent joints and study the influence of different joint heights on the shear failure mode of the rock mass, direct shear tests were carried out by presetting a series of jointed rock specimens with different undulating heights. During the shear loading, digital image correlation (DIC) technology was employed to monitor the surface strain field of the specimens in real time. The results show that the fluctuation height has a significant effect on the evolution of shear strain. With the increase of shear load, the maximum shear strain of the jointed specimens with different undulating heights first increases slowly and then increases rapidly. When the undulating height is 5 mm, the failure of the specimen is dominated by the rock sliding along prefabricated joints. When the undulating height is larger than 10 mm, the shear fracture of the rock becomes dominant. With the increase of the undulating height, more penetrating cracks perpendicular to the preexisting joints appear between the serrated surfaces, and the shear fracture phenomenon is more obvious.


2013 ◽  
Vol 353-356 ◽  
pp. 669-672
Author(s):  
Wei Qiang Xue ◽  
Wei Shen Zhu ◽  
Dun Fu Zhang ◽  
Jin Wei Fu

In this paper, the failure mechanism of rock-like specimens with built-in 3D double cracks under fissure water pressure was numerically investigated. The initiation and propagation process of secondary cracks under fissure water pressure was simulated by using the modified elasto-brittle model and the superfine meshing method in the FLAC3D program. The fluid-solid coupling in cracked rock masses was preliminarily studied. Some of the simulation results are in good agreement with the previous results tested by scholars.


2020 ◽  
Author(s):  
Peng Zhao ◽  
Ling-Zhi Xie ◽  
Zhi-Chao Fan ◽  
Lei Deng ◽  
Jun Liu

Abstract Shale contains a certain amount of natural fractures, which affects the mechanical properties of shale. In this paper, a bonded-particle model in particle flow code (PFC) is established to simulate the failure process of layered shale under Brazilian tests, under the complex relationship between layer plane and natural fracture. First, a shale model without natural fractures is verified against the experimental results. Then, a natural fracture is embedded in the shale model, where the outcomes indicate that the layer plane angle (marked as α) and the angle (marked as β) of embedded fracture prominently interfere the failure strength anisotropy and fracture pattern. Finally, sensitivity evaluations suggest that variable tensile/cohesion strength has a changeable influence on failure mechanism of shale, even for same α or/and β. To serve this work, the stimulated fractures are categorized into two patterns based on whether they relate to natural fracture or not. Meanwhile, four damage modes and the number of microcracks during the loading process are recognized quantitatively to study the mechanism of shale failure behavior. Considering the failure mechanism determines the outcome of hydraulic fracturing in shale, this work is supposed to provide a significant implication in theory for the engineering operation.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Rui Yong ◽  
Leiyu Gu ◽  
Jun Ye ◽  
Shi-Gui Du ◽  
Man Huang ◽  
...  

The shear behavior of rock mass significantly depends upon the surface roughness of rock joints which is generally characterized by the anisotropy characteristic and the scale effect. The large-scale natural rock joint surfaces, at Qingshi Town, southeast of Changshan County, Zhejiang Province, China, were used as a case study to analyze the roughness characteristics. A statistical assessment of joint roughness coefficient (JRC) indicated the roughness anisotropy of different sized rock joints. The lower limit (JRCmean-σ) was regarded as the determinate information, and the difference between lower and upper limits represented indeterminate information. The neutrosophic number (NN) was calculated to express the various JRC values. The parametric equations for JRC anisotropic ellipse were presented based on the JRC statistical assessment of joint profiles of various orientations. The JRC values of different sized joint samples were then quantitatively described by the neutrosophic function. Finally, a neutrosophic parameter ψ for evaluating the scale effect on the surface roughness anisotropy was introduced using the ratio of maximum directional roughness to minimum directional roughness. The case study indicates that the proposed method has the superiority in moving forward from subjective assessment to quantitative and objective analysis on anisotropy characteristic and scale effect of joint surface roughness.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Man Huang ◽  
Chenjie Hong ◽  
Chengrong Ma ◽  
Zhanyou Luo ◽  
Shigui Du

Abstract Anisotropy in rock joint is strongly dependent on undulating surface morphology. Recent research of the morphology showed the parameter can express the different types of anisotropic characteristics of the joint surface separately. This report aims to analyze the common characteristic of the anisotropic distribution and exhibit the anisotropic variation trend. The joint morphology function consists of two morphology functions of regular plane in orthogonal directions, and the anisotropic variation determined by the contribution ratios of the two morphology. The roughness weight ratio in orthogonal direction of joint surface is used as an index to describe the anisotropic variation behavior, which proposes the anisotropic variation coefficient (AVC). On this basis, it is divided into 5 levels from strong anisotropic to isotropic. According to the assumption of anisotropic arc distribution, the anisotropic analytic function is derived and the agreement between the deduced curves and measured data therefore suggests the possibility of defining the morphology anisotropy through the index AVC. Finally, we verify the characteristic of three natural rock joints, and prove the proposed function can reflect the anisotropic distribution trend. The new index can be used to describe the anisotropic variation behaviour of rock joint surfaces.


Sign in / Sign up

Export Citation Format

Share Document