scholarly journals DISINTEGRATION OF COHESIVE CLAY LUMPS USED AS SOIL-CEMENT

1968 ◽  
Vol 1968 (155) ◽  
pp. 25-31
Author(s):  
Shigemasa Hasaba ◽  
Mitsunori Kawamura
Keyword(s):  
2000 ◽  
Vol 49 (1) ◽  
pp. 46-49
Author(s):  
Takeo SUZUKI ◽  
Toshimitsu KUNITO ◽  
Motohiro NISHI

Author(s):  
W. Griffin Sullivan ◽  
Isaac L. Howard

The Proctor test method, as specified in AASHTO T134 and ASTM D558, continues to play a vital role in design and construction quality control for soil-cement materials. However, neither test method establishes a methodology or standardized protocols to characterize the effects of time delay between cement addition and compaction, also known as compaction delay. Compaction delay has been well documented to have a notably negative effect on compactability, compressive strength, and overall performance of soil-cement materials, but specification tools to address this behavior are not prevalent. This paper aims to demonstrate the extent of compaction delay effects on several soil-cement mixtures used in Mississippi and to present recommended new test method protocols for AASHTO T134 to characterize compaction delay effects. Data presented showed that not all soil-cement mixtures are sensitive to compaction delay, but some mixtures can be very sensitive and lead to a meaningful decrease in specimen dry density. Recommended test method protocols were presented for AASHTO T134 and commentary was presented to provide state Departments of Transportation and other specifying agencies a few examples of how the new compaction delay protocols could be implemented.


2021 ◽  
Vol 13 (14) ◽  
pp. 7758
Author(s):  
Biao Qian ◽  
Wenjie Yu ◽  
Beifeng Lv ◽  
Haibo Kang ◽  
Longxin Shu ◽  
...  

To observe the effect of recycled sand and nano-clay on the improvement of the early strength of soil-cement (7d), 0%, 10%, 15% and 20% recycled sand were added. While maintaining a fixed moisture content of 30%, the ratios of each material are specified in terms of soil mass percentage. The shear strength of CSR (recycled sand blended soil-cement) was investigated by direct shear test and four groups of specimens (CSR-1, CSR-2, CSR-3 and CSR-4) were obtained. In addition, 8% nano-clay was added to four CSR groups to obtain the four groups of CSRN-1, CSRN-2, CSRN-3 and CSRN-4 (soil-cement mixed with recycled sand and nano-clay), which were also subjected to direct shear tests. A detailed analysis of the modification mechanism of soil-cement by recycled sand and nano-clay was carried out in combination with scanning electron microscopy (SEM) and IPP (ImagePro-Plus) software. The test results showed that: (1) CSR-3 has the highest shear strength due to the “concrete-like” effect of the incorporation of recycled sand. With the addition of 8% nano-clay, the overall shear strength of the cement was improved, with CSRN-2 having the best shear strength, thanks to the filling effect of the nano-clay and its high volcanic ash content. (2) When recycled sand and nano-clay were added to soil-cement, the improvement in shear strength was manifested in a more reasonable macroscopic internal structure distribution of soil-cement. (3) SEM test results showed that the shear strength was negatively correlated with the void ratio of its microstructure. The smaller the void ratio, the greater the shear strength. This shows that the use of reclaimed sand can improve the sustainable development of the environment, and at the same time, the new material of nano-clay has potential application value.


2013 ◽  
Vol 740 ◽  
pp. 655-658
Author(s):  
Huan Sheng Mu ◽  
Ling Gao

Through the practice of tamped cement soil pile in treatment of soft soil foundation in Guan to Shenzhou section of Daqing-Guangzhou Expressway, the author expounds the action mechanism of rammed soil cement pile, composite foundation design points and calculation method of bearing capacity characteristic value.


2016 ◽  
Vol 869 ◽  
pp. 112-115 ◽  
Author(s):  
Francisca Pereira de Araújo ◽  
Edson Cavalcanti Silva Filho ◽  
João Sammy Nery de Souza ◽  
Josy Anteveli Osajima ◽  
Marcelo Barbosa Furtini

Soil-cement bricks are good examples of environmentally friendly products. This brick is the combination of soil with compacted cement with no combustion in its production. In this work the physical chemical characteristics of the soil from Piaui for producing this material were investigated. Samples of the soil were collected in three potteries from the county of Bom Jesus and pH analysis were carried out, as well as the rate of organic matter, texture, particle density, limits of liquidity and plasticity rates. The results have shown that the soils have acid tones (pH 5,49 a 6,11), which can be neutralized by adding cement, and organic matter percentages up to 1%. The samples have shown predominantly clay-rich textures with adequate plasticity limits, however, values of liquidity limits and particle density above recommended. Altogether, these soils tend to present viability concerning soil-cement brick production, provided that corrections with additives are made in order to minimize this effect.


Sign in / Sign up

Export Citation Format

Share Document