scholarly journals ANCHORAGE METHOD OF CCFP (CONSOLIDATED CARBON FIBER PLATE) FOR STRENGTHENING OF RC SLABS SUBJECTED TO NEGATIVE BENDING MOMENT

2008 ◽  
Vol 64 (4) ◽  
pp. 948-958
Author(s):  
Keiyu YUMIKURA ◽  
Isamu YOSHITAKE ◽  
Sumio HAMADA
2019 ◽  
Vol 9 (11) ◽  
pp. 2235 ◽  
Author(s):  
Linli Duan ◽  
Xin Nie ◽  
Ran Ding ◽  
Liangdong Zhuang

Tensile stresses and cracks in concrete slabs induced by a hogging moment have always been a disadvantage of steel-concrete composite structures and key issue of concern in the design of such structures. To reduce the tensile stress and control the crack width of the reinforced concrete (RC) slab, a new type of connector, called the uplift-restricted and slip-permitted (URSP) connector has been proposed and successfully applied in the area subjected to a negative bending moment in steel-concrete composite bridges. The feasibility of the URSP connector in steel-concrete composite frame buildings is investigated in this study based on a comprehensive parametric analysis. The effects of URSP connectors on the cracking behavior, as well as the stiffness and strength of composite frames, are systematically analyzed using an elaborate finite element model, which resembles a typical composite beam-column joint subjected to both lateral loads and vertical loads. In addition, an optimized arrangement length of URSP connectors is proposed for practical design. The research findings indicate that the application of URSP connectors greatly improves the crack resistance of RC slabs without an obvious reduction of the ultimate capacity and lateral stiffness of the composite frame. It is recommended that the distribution length of URSP connectors at each beam end should be 20–25% of the frame beam length.


2022 ◽  
Author(s):  
Ali Hussam Ali ◽  
Hayder Wafi Ali Al-Thabhawee

2013 ◽  
Vol 671-674 ◽  
pp. 974-979
Author(s):  
Jie Dai ◽  
Jin Di ◽  
Feng Jiang Qin ◽  
Min Zhao ◽  
Wen Ru Lu

For steel box girder of cable-stayed bridge, which using incremental launching method, during the launching process, structural system and boundary conditions were changing, structure mechanical behaviors were complex. It was necessary to conduct a comprehensive analysis on internal force and deformation of the whole structure during the launching process. Took a cable-stayed bridge with single tower, double cable planes and steel box girder in China as an example; finite element software MIDAS Civil 2010 was used to establish a model for steel box girder, simulation analysis of the entire incremental launching process was carried out. Variation rules and envelopes of the internal force, stress, deformation and support reaction were obtained. The result showed that: the maximum value of positive bending moment after launching complete was 60% of the maximum value of positive bending moment during the launching process. The maximum value of negative bending moment after launching complete was 78% of the maximum value of negative bending moment during the launching process.


2017 ◽  
Vol 21 (9) ◽  
pp. 1288-1301 ◽  
Author(s):  
Alireza Gholamhoseini ◽  
Amir Khanlou ◽  
Gregory MacRae ◽  
Stephen Hicks ◽  
Allan Scott ◽  
...  

An experimental study was conducted on reinforced and steel fibre–reinforced concrete composite slabs with steel decking under negative bending moment to quantify the ultimate behaviour, loading capacity and crack width under short-term loading. Eight full-scale slab specimens were cast with different types and amounts of reinforcement in the concrete (e.g. mesh, steel fibre or normal reinforcing bars) but with the same type of steel decking. Each slab was simply supported and tested in four-point bending under increasing load until failure. The deflections at mid-span and under the applied point loads were monitored together with the end interface slip. The crack widths were obtained for each slab for different levels of applied load. It was found that the end slip was quite negligible and complete interaction on the steel decking–concrete slab interface existed at service loads and ultimate limit states. Compared to the slab with 20 kg/m3 steel fibre, the application of steel fibre in excess of 60 kg/m3 increased the rotational capacity and ultimate load by 60% and 80%, respectively. Moreover, the higher dosage of steel fibres resulted in improved crack control, as for the same level of applied load, the crack width was often reduced by 75%. However, the slabs with conventional high-strength ductile reinforcements had the greatest ultimate load and rotational capacity and exhibited the best degree of crack control with finer and more distributed cracks.


2020 ◽  
Vol 10 (4) ◽  
pp. 1335 ◽  
Author(s):  
Shuwen Deng ◽  
Xudong Shao ◽  
Banfu Yan ◽  
Yan Wang ◽  
Huihui Li

Joints are always the focus of the precast structure for accelerated bridge construction. In this paper, a girder-to-girder joint suitable for steel-ultra-high-performance concrete (UHPC) lightweight composite bridge (LWCB) is proposed. Two flexural tests were conducted to verify the effectiveness of the proposed T-shaped girder-to-girder joint. The test results indicated that: (1) The T-shaped joint has a better cracking resistance than the traditional I-shaped joint; (2) The weak interfaces of the T-shaped joint are set in the areas with relatively lower negative bending moment, and thus the cracking risk could be decreased drastically; (3) The natural curing scheme for the joint is feasible, and the reinforcement has a very large inhibitory effect on the UHPC material shrinkage; The joint interface is the weak region of the LWCB, which requires careful consideration in future designs. Based on the experimental test results, the design and calculation methods for the deflection, crack width, and ultimate flexural capacity in the negative moment region of LWCB were presented.


2012 ◽  
Vol 166-169 ◽  
pp. 1023-1028 ◽  
Author(s):  
Li Hua Chen ◽  
Qi Liang Jin ◽  
Haiyu Si

Static load tests were conducted on two reversed-loading simply supported and two continuous outer-plated steel-concrete composite beams to study the formation and development of cracks in such beams under negative bending moment. The test results show that based on the plane section assumption, it is an effective and economical method to calculate the cracking moment of the composite beams assuming a rectangular stress block for concrete in tension zone. Considering the structural features of outer-plated steel-concrete composite beams, the formula for calculating crack width of concrete flange of outer-plated steel-concrete composite beams is discussed and presented, and the calculated values of crack width agree well with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document