scholarly journals ADSORPTION KINETICS OF Pb(II), Cd(II) AND Cr(III) ON ADSORBENT PRODUCED BY PROTECTED-CROSSLINKING OF HUMIC ACID-CHITOSAN

2010 ◽  
Vol 10 (1) ◽  
pp. 80-87
Author(s):  
Dewi Umaningrum ◽  
Uripto Trisno Santoso ◽  
Radna Nurmasari ◽  
Rahmat Yunus

Study on adsorption kinetics of of Pb(II), Cd(II) and Cr(III) on adsorbent which was produced by protected-crosslinking of humic acid-chitosan has been done. The Langmuir-Hinshelwood, pseudo first- and second-order kinetics models were used to describe the kinetic data, and the rate constants of adsorption were also evaluated. The experimental data fitted well the second-order kinetics model, indicating that the chemical sorption is the rate-limiting step, instead of mass transfer. The initial metal ion concentration significantly affects the adsorption rate. An increase in initial metal ion concentration results in the decrease in adsorption rate of the metals.   Keywords: kinetics, adsorption, crosslinking, humic acid, chitosan

2008 ◽  
Vol 5 (4) ◽  
pp. 802-809 ◽  
Author(s):  
Xiu-yan Pang ◽  
Fei Gong

Expanded graphite (EG) is a kind of important adsorbent for organic compound such as oil and dyes. We have investigated the adsorption kinetics characteristics of this adsorbent for dye. EG was prepared with 50 mesh crude graphite through chemical oxidation intercalation of potassium permanganate and vitriol, and dye of acid red 3B was used as model sorbate. We have studied the adsorption kinetic models and rate-limiting step of the process. Adsorption rate and activation energy of the adsorption process were calculated. Kinetic studies show that the kinetic data are well described by the pseudo second-order kinetic model. The equilibrium adsorbance increases with the increase of the initial acid red 3B concentration. Initial adsorption rate increases with the increase of the initial dye concentration and temperature. Adsorption process of acid red 3B on EG has small activation energy. Internal diffusion appears to be the rate-limiting step for the adsorption process.


1979 ◽  
Vol 44 (3) ◽  
pp. 912-917 ◽  
Author(s):  
Vladimír Macháček ◽  
Said A. El-bahai ◽  
Vojeslav Štěrba

Kinetics of formation of 2-imino-4-thiazolidone from S-ethoxycarbonylmethylisothiouronium chloride has been studied in aqueous buffers and dilute hydrochloric acid. The reaction is subject to general base catalysis, the β value being 0.65. Its rate limiting step consists in acid-catalyzed splitting off of ethoxide ion from dipolar tetrahedral intermediate. At pH < 2 formation of this intermediate becomes rate-limiting; rate constant of its formation is 2 . 104 s-1.


1991 ◽  
Vol 56 (8) ◽  
pp. 1701-1710 ◽  
Author(s):  
Jaromír Kaválek ◽  
Vladimír Macháček ◽  
Miloš Sedlák ◽  
Vojeslav Štěrba

The cyclization kinetics of N-(2-methylcarbonylphenyl)-N’-methylsulfonamide (IIb) into 3-methyl-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide (Ib) has been studied in ethanolamine, morpholine, and butylamine buffers and in potassium hydroxide solution. The cyclization is subject to general base and general acid catalysis. The value of the Bronsted coefficient β is about 0.1, which indicates that splitting off of the proton from negatively charged tetrahedral intermediate represents the rate-limiting and thermodynamically favourable step. In the solutions of potassium hydroxide the cyclization of dianion of the starting ester IIb probably becomes the rate-limiting step.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2558 ◽  
Author(s):  
Zhansheng Wu ◽  
Xinhui Wei ◽  
Yongtao Xue ◽  
Xiufang He ◽  
Xia Yang

Activated carbons (ACs) based on apricot shells (AS), wood (W), and walnut shells (WS) were applied to adsorb atrazine in co-solutions. To study the effect of Bisphenol A (BPA) on the adsorption behavior of atrazine, the adsorption performance of ACs for BPA in single solution was studied. The results demonstrated that the adsorption kinetics of BPA fitted the pseudo-second-order model, the adsorption isotherms of BPA followed the Langmuir model. Meanwhile, the adsorption kinetics of atrazine fitted the pseudo-second-order kinetics model and the isotherm was consistent with the Freundlich model both in single solution and co-solution. In addition, competitive adsorption was observed when atrazine coexisted with BPA or humic acid. For the adsorption capacity, the adsorption amount of ASAC, WAC, and WSAC for atrazine obviously decreased by 18.0%, 30.0%, and 30.3% in the presence of BPA, respectively, which was due to the π−π interactions, hydrophobic interactions, and H-bonds, resulting in the competitive adsorption between atrazine and BPA. This study contributes to the further understanding of the adsorption behavior for atrazine in co-solution.


1975 ◽  
Vol 147 (3) ◽  
pp. 541-547 ◽  
Author(s):  
C J Dickenson ◽  
F M Dickinson

1. The kinetics of oxidation of butan-1-ol and propan-2-ol by NAD+, catalysed by yeast alcohol dehydrogenase, were studied at 25 degrees C from pH 5.5 to 10, and at pH 7.05 from 14 degrees to 44 degrees C, 2. Under all conditions studied the results are consistent with a mechanism whereby some dissociation of coenzyme from the active enzyme-NAD+-alcohol ternary complexes occurs, and the mechanism is therefore not strictly compulsory order. 3. A primary 2H isotopic effect on the maximum rates of oxidation of [1-2H2]butan-1-ol and [2H7]propan-2-ol was found at 25 degrees C over the pH range 5.5-10. Further, in stopped-flow experiments at pH 7.05 and 25 degrees C, there was no transient formation of NADH in the oxidation of butan-1-ol and propan-2-ol. The principal rate-limiting step in the oxidation of dependence on pH of the maximum rates of oxidation of butan-1-ol and propan-2-ol is consisten with the possibility that histidine and cysteine residues may affect or control catalysis.


1990 ◽  
Vol 55 (6) ◽  
pp. 1535-1540 ◽  
Author(s):  
Prerepa Manikyamba

Kinetics of oxidation of 1- and 2-acetylnaphthalenes by iodate in the presence of sulphuric acid in aqueous methanol has been studied. The reaction is first order with respect to both [iodate] and [acetylnaphthalene]. Solvent effect indicates a cation-dipole type of interaction in the rate limiting step. A mechanism is proposed with a slow attack of IO2+ on enol form of acetylnaphthalene forming an intermediate carbonium ion, which ultimately gives corresponding ω-hydroxyacetylnaphthalene. The higher reactivity of 2-acetyl isomer is attributed to the greater stability of the corresponding carbonium ion than that of 1-acetyl isomer.


1988 ◽  
Vol 53 (12) ◽  
pp. 3154-3163 ◽  
Author(s):  
Jiří Klicnar ◽  
Jaromír Mindl ◽  
Ivana Obořilová ◽  
Jaroslav Petříček ◽  
Vojeslav Štěrba

The reaction of 1,2-diaminobenzene with 2,3-butanedione is subject to general acid catalysis in acetate and phosphate buffers (pH 4-7). The rate-limiting step of formation of 2,3-dimethylquinoxaline consists in the protonation of dipolar tetrahedral intermediate. In the case of the reaction of 1,2-diaminobenzene with ethyl 2-oxopropanoate, the dehydration of carbinolamine gradually becomes rate-limiting with increasing pH in acetate buffers, whereas in phosphate buffers a new reaction pathway makes itself felt, viz. the formation of amide catalyzed by the basic buffer component and by hydroxide ion.


Sign in / Sign up

Export Citation Format

Share Document