scholarly journals Strategi Mengatasi Penyebab Surging Mesin Diesel Penggerak Utama di MT. ONTARI

2021 ◽  
Vol 3 (2) ◽  
pp. 29
Author(s):  
Afdolludin Afta Tazani

Turbocharger is a component to increase the amount of air that enters the cylinder by using exhaust gas energy. Very high quality gas turbocharger.The research method used in this research is descriptive qualitative method. Data analysis techniques use the SWOT method to analyze the factors that cause surging of the Main Movers Diesel Engine and the efforts made to overcome the factors associated with strengthening, weakness, opportunities, and protection.Based on the results of research conducted by researchers, the cause of the rise in Diesel Engine The main driving force is caused by two factors, namely the escape of compression during combustion due to oversize cylinder liner and spare parts of the main engine supply on the ship is hampered. To overcome the factors that can be done using cylinder liner that has been oversized, reducing the rotation of the main engine so that the exhaust gas is more stable, reducing the consumption of cylinder oil to reduce sludge in the rinse air chamber, using a blower to be manual to increase the rinse air to normal pressure during the engine operation, reconditioning the spare parts Parent engines such as crown pistons and piston rings by repairing so that they can be used again temporarily waiting for parts to arrive on board, and making spare parts purchases with boat money on spare parts that are lightweight and inexpensive for maintenance and repair of main engine spare parts.

Author(s):  
Ming Zheng ◽  
David K. Irick ◽  
Jeffrey Hodgson

For diesel engines (CIDI) the excessive use of exhaust gas recirculation (EGR) can reduce in-cylinder oxides of nitrogen (NOx) generation dramatically, but engine operation can also approach zones with high instabilities, usually accompanied with high cycle-to-cycle variations and deteriorated emissions of total hydrocarbon (THC), carbon monoxide (CO), and soot. A new approach has been proposed and tested to eliminate the influences of recycled combustibles on such instabilities, by applying an oxidation catalyst in the high-pressure EGR loop of a turbocharged diesel engine. The testing was directed to identifying the thresholds of stable operation at high rates of EGR without causing cycle-to-cycle variations associated with untreated recycled combustibles. The elimination of recycled combustibles using the oxidation catalyst showed significant influences on stabilizing the cyclic variations, so that the EGR applicable limits are effectively extended. The attainability of low NOx emissions with the catalytically oxidized EGR is also evaluated.


Author(s):  
Shigeto Yamamoto ◽  
Hiroshi Sakita ◽  
Masaaki Takiguchi ◽  
Shinichi Sasaki

Abstract The deformation of the cylinder liner of a diesel engine in actual operation have been measured by the means of a rotary piston, and the deformation has been compared with those measured statically at room temperature. As a result, it is found that the deformation of the liner in engine operation is hardly affected by the deformation at room temperature, but it follows the deformation of the cylinder block where the liner is inserted. It is also found as follows: The deformation of the liner upper portion varies according to the head bolts and the engine load, while the effect of the cylinder pressure is insignificant. The deformation at the middle of the liner changes mainly by the thermal expansion in the thrust direction, while the deformation at the lower portion is not affected by the engine speed or the load.


2011 ◽  
Vol 18 (4) ◽  
pp. 43-48 ◽  
Author(s):  
Marek Dzida ◽  
Wojciech Olszewski

Comparing combined gas tubrine/steam turbine and marine low speed piston engine/steam turbine systems in naval applications The article compares combined systems in naval applications. The object of the analysis is the combined gas turbine/steam turbine system which is compared to the combined marine low-speed Diesel engine/steam turbine system. The comparison refers to the additional power and efficiency increase resulting from the use of the heat in the exhaust gas leaving the piston engine or the gas turbine. In the analysis a number of types of gas turbines with different exhaust gas temperatures and two large-power low-speed piston engines have been taken into account. The comparison bases on the assumption about comparable power ranges of the main engine.


2017 ◽  
Vol 8 (2) ◽  
pp. 73-77
Author(s):  
Muhammad Fakhrurozi ◽  
Askan Askan

The development of technology and industry has also affected the level of pollution. Side effects that are very influential on human health include the level of noise that comes out of the exhaust gas (exhaust). Sound pollution comes from either gasoline-fueled or diesel-fueled engine vehicles, especially in diesel engines. To reduce noise levels there are several ways that can be done; (1) Giving a silencer to the engine, (2) Designing a muffler on the exhaust gas line, (3) Placing the sound source in the correct position, and (4) Setting the engine operation and maintenance schedule. One way to reduce the noise level in a diesel engine is to trap a particulate trap installed in the exhaust gas (exhaust). This method can reduce the gas particles from combustion to the disposal process, so that the noise level can be reduced. The purpose of this study was to determine how much influence the installation of particulate trap made of brass metal in the exhaust of a diesel engine to the level of noise caused. This study uses a factorial type random design by varying the weight of the active ingredient of metal particulate trap 200gr, 300gr, 400g at engine speed between 900-1700rpm. The results of this study indicate that the lowest noise level is obtained from a 300 gr particulate trap ranging from 79.3 dB - 79.4 dB.


2014 ◽  
Vol 6 (5) ◽  
pp. 570-576
Author(s):  
Justas Žaglinskis ◽  
Kristóf Lukács ◽  
Ákos Bereczky ◽  
Paulius Rapalis

The investigation of modified methodology of Audi 1.9 TDI 1Z diesel engine heat release parameters’ determination is represented in the article. In this research the AVL BOOST BURN and IMPULS software was used to treat data and to simulate engine work process. The reverse task of indicated pressure determination from heat release data was solved here. T. Bulaty and W. Glanzman methodology was modified for purpose to simplify the determination of heat release parameters. The maximal cylinder pressure, which requires additional expensive equipment, was changed into the objective indicator – exhaust gas temperature. This modification allowed to simplify the experimental engine tests and also gave simulation results in an error range up to 2% of main engine operating parameters. The study results are assessed as an important point for the simplification of engine test under field conditions. Straipsnyje pateikta dyzelinio Audi variklio 1,9 TDI 1Z šilumos išsiskyrimo parametrų nustatymo metodikos ir jos modifikavimo tyrimas. Šio tyrimo procese atilikto eksperimento duomenims apdoroti ir darbo procesui modeliuoti panaudoti AVL BOOST BURN ir IMPULS programiniai paketai. Tyrime buvo sprendžiamas atvirkščias indikatorinio slėgio nustatymo iš šilumos charakteristikos duomenų uždavinys. Siekiant supaprastinti šilumos išsiskyrimo parametrų nustatymą, panaudota modifikuota T. Bulaty ir W. Glanzman metodika. Maksimalaus slėgio cilindre parametras, kurio nustatymas reikalauja papildomos brangios įrangos, buvo pakeistas objektyviu išmetamųjų dujų temperatūros parametru. Šis modifikavimas leidžia supaprastinti eksperimentinius tyrimus bei leido atlikti pagrindinių variklio darbo parametrų modeliavimą neviršijant 2 % paklaidų ribos. Tyrimo rezultatas vertinamas itin svarbiu variklių bandymų lauko sąlygomis supaprastinimo atžvilgiu.


2016 ◽  
Vol 23 (3) ◽  
pp. 58-63 ◽  
Author(s):  
Dariusz Pietras

Abstract The article discusses the effect of fuel dose division in the Diesel engine on smoke opacity and composition of the emitted exhaust gas. The research activities reported in the article include experimental examination of a small Diesel engine with Common Rail type supply system. The tests were performed on the engine test bed equipped with an automatic data acquisition system which recorded all basic operating and control parameters of the engine, and smoke opacity and composition of the exhaust gas. The parameters measured during the engine tests also included the indicated pressure and the acoustic pressure. The tests were performed following the pre-established procedure in which 9 engine operation points were defined for three rotational speeds: 1500, 2500 and 3500 rpm, and three load levels: 25, 40 and 75 Nm. At each point, the measurements were performed for 7 different forms of fuel dose injection, which were: the undivided dose, the dose divided into two or three parts, and three different injection advance angles for the undivided dose and that divided into two parts. The discussion of the obtained results includes graphical presentation of contests of hydrocarbons, carbon oxide, and nitrogen oxides in the exhaust gas, and its smoke opacity. The presented analyses referred to two selected cases, out of nine examined engine operation points. In these cases the fuel dose was divided into three parts and injected at the factory set control parameters. The examination has revealed a significant effect of fuel dose division on the engine efficiency, and on the smoke opacity and composition of the exhaust gas, in particular the content of nitrogen oxides. Within the range of low loads and rotational speeds, dividing the fuel dose into three parts clearly improves the overall engine efficiency and significantly decreases the concentration of nitrogen oxides in the exhaust gas. Moreover, it slightly decreases the contents of hydrocarbons and carbon oxide. In the experiment the contents of nitrogen oxides markedly increased with the increasing injection advance angle for the undivided dose and that divided into two parts. This, in turn, led to the decrease of the contents of hydrocarbons and carbon oxide. Fuel dose division into two and three parts leads to the increase of smoke opacity of the exhaust gas, compared to the undivided dose.


2015 ◽  
Vol 22 (3) ◽  
pp. 90-98 ◽  
Author(s):  
Jerzy Kowalski

Abstract Presented paper shows the results of the laboratory tests on the relationship between throttling of both air intake duct and exhaust gas duct and a gaseous emission from the marine engine. The object of research is a laboratory, four-stroke, DI diesel engine, operated at loads from 50 kW to 250 kW at a constant speed equal to 750 rpm. During the laboratory tests over 50 parameters of the engine were measured with its technical condition recognized as a „working properly” and with simulated leakage of both air intake valve and exhaust gas valve on the second cylinder. The results of this laboratory research confirm that the leakage of cylinder valves causes no significant changes of the thermodynamic parameters of the engine. Simulated leakages through the inlet and exhaust valve caused a significant increase in fuel consumption of the engine. Valve leakages cause an increase of the exhaust gas temperature behind the cylinder with leakage and behind other cylinders. The exhaust gas temperature increase is relatively small and clearly visible only at low loads of the engine. The increase of the temperature and pressure of the charging air behind the intercooler were observed too. Charging air temperature is significantly higher during the engine operation with inlet valve leakage. The study results show significant increases of the CO, NOx and CO2 emission for all the mentioned malfunctions. The conclusion is that the results of measurements of the composition of the exhaust gas may contain valuable diagnostic information about the technical condition of the air intake duct and the exhaust gas duct of the marine engine.


2018 ◽  
Vol 29 (3) ◽  
pp. 372-391 ◽  
Author(s):  
M Krishnamoorthi ◽  
R Malayalamurthi

The threat of fossil fuel depletion and augmented environmental pollution caused by diesel fleets can be curbed by adopting suitable fuel and engine modifications. In the present work, effects of engine speed (r/min), injection timing, injection pressure and compression ratio on performance and emission characteristics of a compression ignition engine were investigated. The ternary test fuel of 65% diesel + 25% bael oil + 10% diethyl ether has been used, where the tests have been conducted at different charge inlet temperature and exhaust gas recirculation. All the experiments were conducted at the trade-off engine load that is 75% engine load. When the diesel engine operating with 320 K charge inlet temperature, brake thermal efficiency has been improved to 28.6%. Meanwhile reduced emission levels of carbon monoxide (0.025%) and hydrocarbon (12.3 ppm) were observed during the engine operation with 320 K charge inlet temperature and compression ratio of 18:1. The oxides of nitrogen have been reduced to 226 ppm at 16:1 compression ratio with 30% exhaust gas recirculation mode.


2018 ◽  
Vol 1 (2) ◽  
pp. 131
Author(s):  
Eko Wismo Winarto ◽  
Harjono Harjono ◽  
Lava Himawan

The diesel engine lifespan increasing in marine operation will decrease their perfomance.  Some problems will occur, there are hard starting, bad exhaust gas colour and bad power output, suddenly engine stop and hard to start back. There fore any diesel engine training is needed to guard engine perfome. The KKM (Ketua Kamar Mesin= engine room head) training for maintaining their ability to serve diesel engine properly is necesary.   Their ability have came from their friend or autodidact. The 25 fishingman ships were burning at Blora quay last several mounths prove of the lack of their ability. Thre are some rutine maintenances sould be done; every 8 hours Radiator water, diesel fuel and lubricantion oil are controlled, every week (150 hours) air screen cleaning, every two weeks (250 hours) oil lubricant replacement. Every month (500 hours) readjust fuel valve, every 1000 hours oil lubricant replacement and garvernor funtion checking, every 1500 hours inlet manifold cleaning and exhaust sistem, every 3000 fuel tank cleaning and to overhaul also replacement worn out spare parts, every 6000 hours cylinder head take apart and carbonation, and every 12000 hours general over haul and replacement worn out spare part.


Sign in / Sign up

Export Citation Format

Share Document