scholarly journals Study of thermo-acoustical properties of Liquid mixtures of Aqueous solution of Lithium Chloride and Lithium Hydroxide at Different Temperatures

2021 ◽  
Vol 33 (2) ◽  
pp. 5-11
Author(s):  
NEERAJ RATHORE ◽  
◽  
AJAY KUMAR SINGH ◽  

Density, viscosity and ultrasonic velocity of the various compositions of liquid mixtures of aqueous solutions of Lithium chloride (LiCl) and Lithium hydroxide (LiOH) have been experimentally measured at 303,308,313 and 318K and at atmospheric pressure. From these experimental measurements the acoustic impedance (Z) and adiabatic compressibility (ad) have been calculated. The variations in these parameters have been correlated to derive the intermolecular interactions taking place between the mixtures of present study.

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Sk. Fakruddin ◽  
Ch. Srinivasu ◽  
B. R. Venkateswara Rao ◽  
K. Narendra

The ultrasonic velocity and density of binary liquid mixtures of quinoline with o-xylene, m-xylene, and p-xylene have been measured over the entire range of composition at = 303.15, 308.15, 313.15, and 318.15 K. Using these data, various parameters like adiabatic compressibility (β), intermolecular free length (), and acoustic impedance () and some excess parameters like excess adiabatic compressibility (), excess intermolecular free length (), excess acoustic impedance (), and excess ultrasonic velocity () have been calculated for all the three mixtures. The calculated deviations and excess functions have been fitted to Redlich-Kister polynomial equation. The observed deviations have been explained on the basis of the intermolecular interactions present in these mixtures.


2021 ◽  
Vol 33 (11) ◽  
pp. 2796-2802
Author(s):  
Mohammad Aftabuzzaman ◽  
Mohammad Monirul Islam ◽  
Nasiruddin ◽  
Farhana Rahman Rima ◽  
Mohammad Nazrul Islam ◽  
...  

Densities and sound velocities of the binary liquid mixtures of sulfolane + aniline, sulfolane + N,N-dimethylaniline, sulfolane + N,N-diethylaniline over the whole range of composition and their pure component were measured at temperatures (T = 303.15, 308.15, 313.15 K) and atmospheric pressure. A high precision vibrating-tube densitometer was used for the measurements. From the measured values, excess adiabatic compressibility (βs E), excess sound velocity (uE), excess internal pressure (Pi E) and deviation of surface tension (Δγ) were calculated for each of the systems. The excess properties and surface tension deviation were fitted to the Redlich-Kister equation. All these properties have been discussed in terms of molecular interactions.


Author(s):  
S.L. Dahire ◽  
Y.C. Morey ◽  
P.S. Agrawal

The present study reports densities (ρ), viscosities (η) and ultrasonic speeds (U) of pure dioxane (DOX), anisole (ANS), toluene (TOL) and ethylbenzene (ETB) and their binary liquid mixtures over the entire composition range at 293, 298, 303, 308 and 313 K. From the experimental data excess molar volume (VmE), excess intermolecular free length (LfE), excess adiabatic compressibility (βE) and excess acoustic impedance (ZE) have been computed. The excess values were correlated using Redlitch-Kister polynomial equation to obtain their coefficients and standard deviations (σ). With increase in temperature, the binary mixture of DOX+ANS shows larger deviations in βE, LfE and smaller deviations in ZE, VmE. These results suggest that ANS has strong molecular interactions with DOX than ETB and TOL.


2018 ◽  
Vol 232 (3) ◽  
pp. 393-408 ◽  
Author(s):  
Dinesh Kumar ◽  
Shashi Kant Sharma

AbstractDensities,ρand ultrasonic speeds, u of L-histidine (0.02–0.12 mol·kg−1) in water and 0.1 mol·kg−1aqueous citric acid solutions were measured over the temperature range (298.15–313.15) K with interval of 5 K at atmospheric pressure. From these experimental data apparent molar volume ΦV, limiting apparent molar volume ΦVOand the slopeSV, partial molar expansibilities ΦEO, Hepler’s constant, adiabatic compressibilityβ, transfer volume ΦV, trO, intermolecular free length (Lf), specific acoustic impedance (Z) and molar compressibility (W) were calculated. The results are interpreted in terms of solute–solute and solute–solvent interactions in these systems. It has also been observed that L-histidine act as structure maker in water and aqueous citric acid.


Author(s):  
Baljeet Singh Patial

Ultrasonic velocities (u), densities (ρ) and viscosities (η) are measured in respect of ethylmethylketone (EMK) and N,N-dimethylformamide (DMF) over the entire composition at 298, 308and 318K. Attempt have been made to extract the information with respect to various kind of intermolecular interactions, such as H-bonding, dipole-dipole, solute –solvent, dispersion type interactions existing between these two components from the following acoustical parameter when examined as a function of solvent composition at different temperatures: adiabatic compressibility (β), specific acoustic impedance (Z), intermolecular free length (Lf), molar sound velocity (Rm), wada’s constant (W), viscous relaxation time (τ), free volume and internal pressure (πi).


Author(s):  
C.H. Srinivasu ◽  
K. Anil Kumar ◽  
S.K. Fakruddin ◽  
K. Narendra ◽  
T. Anjaneyulu

The values of ultrasonic velocity (u), density (ρ), and viscosity (η) have been measured experimentally in the binary liquid mixture containing 1-butanol and hexane over the entire range of composition at different temperatures 313.15 K, 318.15 K and 323.15 K. This experimental data have been used to calculate the acoustical parameters such as adiabatic compressibility (β), free length (Lf), molar volume (Vm) and acoustic impedance(z). The results have been qualitatively used to explain the molecular interactions between the components of the liquid mixture.


1988 ◽  
Vol 66 (3) ◽  
pp. 371-373 ◽  
Author(s):  
T. Ramanjappa ◽  
E. Rajagopal

The temperature dependance of adiabatic compressibility minimum (TACM), sound velocity maximum (TSVM), and specific acoustic impedance (TSAIM) of water–cyclohexanone mixture has been studied by experimentally determining the sound velocity in and density of aqueous solution at different concentrations over a temperature range 36–77 °C. The structural contribution to the shift in TACM, TSVM, and TSAIM has been evaluated. The shifts are negative and increase with concentration. The results indicate that cyclohexanone behaves as a structure breaker at higher temperature.


2015 ◽  
Vol 1086 ◽  
pp. 107-110
Author(s):  
B. Rohini ◽  
Solomon Jeevaraj A. Kingson

Ultrasonic parameters of CuO: Diethylamine-Isopropaonol binary nanofluids at six different concentrations have been reported at three different temperatures like 298K, 308K and 318K. The acoustical parameters such as Ultrasonic sound velocity (v), Compressibility (β), Inter molecular free length (Lf), Acoustic impedance (Z) are calculated from experimental data. The variation of these parameters with composition of the mixture helps us in understanding the nature and extent of interaction between particles and the binary liquid mixtures.KeywordsUltrasonic velocity, Compressibility, Acoustic impedance, Inter molecular free length, Nanofluids


Author(s):  
G. Pavan Kumar ◽  
Ch. Praveen Babu ◽  
K. Samatha ◽  
A.N. Jyosthna ◽  
K. Showrilu

Ultrasonic velocities (U), densities (ρ), and coefficient of viscosities (η) are measured for binary mixtures containing (i) p-chlorotoluene and (ii) benzene at 303.15 K, 308.15 K, 313.15 K and 318.15 K to understand the molecular interaction. Various acoustical parameters such as adiabatic compressibility (βad), free length (Lf), acoustic impedance (Z), free volume (Vf), molar volume (Vm), Rao’s constant (R), Wada’s constant (W) and internal pressure (πi), are calculated from the measured values of U, ρ, and η. The trend in acoustical parameters also substantiates to asses strong molecular interactions.


Sign in / Sign up

Export Citation Format

Share Document