scholarly journals Experimental and Numerical Study of Collector Geometry Effect on Solar Chimney Performance

2017 ◽  
Vol 12 (4) ◽  
pp. 59-71
Author(s):  
Aseel K. Shyaa ◽  
Rafea A. H. Albaldawi ◽  
Maryam Muayad Abbood

There have been many advances in the solar chimney power plant  since 1930 and the first pilot work was built in Spain (Manzanares) that produced 50 KW. The solar chimney power plant is considered of a clean power generation that needs to be investigated  to enhance the performance by studying the effect of changing the area of passage of air to enhance the velocity towards the chimney to maximize design velocity. In this experimental and numerical study, the reduction area of solar collector was investigated. The reduction area that mean changing the height of glass cover from the absorbing plate (h1=3.8cm, h2=2.6cm and h3=1.28cm). The numerical study was performed using ANSYS Fluent software package (version 14.0) to solve governing equations. The aim of this work was to study the effect of change the height of reduction area to the design velocity (velocity move the blade of turbine at inlet in the chimney). The results showed that the third height (h3=1.28cm) gives the best result because when decreasing the height between the glass cover and absorbing plate, the area between them decreased and the design velocity increased then the efficiency of solar chimney model was increased.

2013 ◽  
Vol 561 ◽  
pp. 614-619 ◽  
Author(s):  
Qing Ling Li ◽  
Xiao Qing Xie ◽  
Jun Chao ◽  
Xuan Xin ◽  
Yan Zhou

A numerical study with FLUENT software has been carried out as to air performance in the slope solar energy power plant. The velocity field, temperature and pressure fields in the solar chimney, and the simulated result were compared with the simulated result of traditional solar chimney power generating equipment. The simulation results show that distribution of the temperature field and the velocity field in slope solar energy power plant and traditional solar chimney power generating equipment. In the case of the same height, the velocity of traditional is slightly larger than the slope style's, but there is little difference. In order to achieve the same power generation effect, the overall height of slope style is more than the traditional style, but the vertical chimney height of traditional style is greater than the slope style. The cost of construction of vertical chimney is expensive, and many problems have been considered, like radix saposhnikoviae and earthquake prevention, the heat collector also need to be cleaned on time. The slope style can take full advantage of land, the height of vertical chimney will be reduced, so the construction of the chimney will be relatively easy. Rainwater can clean the heat collector when it runs down from it. All things considered. The slope solar energy power plant has more development prospects.


2015 ◽  
Vol 105 ◽  
pp. 197-205 ◽  
Author(s):  
Penghua Guo ◽  
Jingyin Li ◽  
Yunfeng Wang ◽  
Yuan Wang

2018 ◽  
Vol 225 ◽  
pp. 04011
Author(s):  
Mohammed A. Aurybi ◽  
Hussain H. Al-Kayiem ◽  
Syed I.U. Gilani ◽  
Ali A. Ismaeel

In this study, a novel approach has been proposed as a solar chimney integrated with an external heat source to extend the system operation during the absence of solar energy. Flue gas channels have been utilized to exchange heat with the air inside the collector of the solar chimney. The hybrid solar chimney has been investigated numerically by ANSYS-Fluent software, using discrete ordinates radiation model. The hybrid system was simulated in 3D, steady-state by solving Navier-Stokes and energy equations. The numerical results have been validated using experimental measurements of a conventional solar chimney. The influence of flue channels on the system performance was predicted and analyzed in hybrid mode. With 0.002 kg/s of flue gas at 100°C injected in flue channels during the daytime; hybrid mode results demonstrated enhancement of 24% and 9 % for velocity and temperature, respectively. The power generation was enhanced by 56%. It has been proved that the proposed technique is able to resolve the set back of night operation problem of the solar chimney plants.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 902
Author(s):  
Haixia Wang ◽  
Jusheng Chen ◽  
Ping Dai ◽  
Fujiang Zhang ◽  
Qingling Li

The solar chimney power plant system (abbreviated as SCPPS) is a clean and pollution-free facility for generating electric power. To improve the generating efficiency, a bank of baffles can be arranged under the collector in SCPPS. ANSYS Fluent 18.2 was used to numerically simulate 3D models of SCPPS with or without baffles, and an experimental apparatus was built for verification. There are seven different types of model discussed here: the SCPPS without baffles (prototype), and other six types of models with different baffles (a-type, b-type, c-type, d-type, e-type, and f-type). The pressure fields, temperature fields, velocity fields, and power outputs of different models under the different baffles are discussed. It is shown that the addition of baffles in the system can increase the temperature field, pressure field, velocity field, and power output to varying degrees, but b-type baffles better improve the temperature and velocity uniformity of the system, and intensify the output power. For b-type, the simulation of the systems with five different baffle numbers (3, 4, 6, 8, and 12, respectively) was carried out, and it was concluded that the system with 12 baffles is the best in improving the system performance. It can be seen that the more the number of baffles, the better the performance of SCPPS. The experiments are also verified the simulation.


Author(s):  
Ahmed Ayadi ◽  
Zied Driss ◽  
Abdallah Bouabidi ◽  
Haithem Nasraoui ◽  
Moubarek bsisa ◽  
...  

The aim of this paper is to highlight the impact of the chimney height on the local characteristics of the air flow within a solar chimney power plant. The solar chimney power plant prototype was numerically and experimentally investigated. The experimental prototype of the solar chimney power plant was built in the National School of Engineers of Sfax, University of Sfax, Tunisia in the North Africa. The prototype is characterized by a collector diameter equal to D = 2750 mm, a collector height equal to h = 50 mm, a chimney height equal to H = 3000 mm, and a chimney diameter equal to d = 160 mm. The air flow has been simulated using the commercial software Ansys Fluent 17.0 and the computational findings have been validated using our experimental results. Computational fluid dynamics findings confirm that the chimney height is very influential on the local characteristics of the solar chimney power plant.


2021 ◽  
Vol 19 ◽  
pp. 103-108
Author(s):  
S. Djimli ◽  
◽  
A. Chaker ◽  
T.E. Boukelia ◽  
A. Ghellab ◽  
...  

This work offers the opportunity to consider the possibility of realizing a solar chimney power plant in the region of Constantine (Algeria). This region is characterized by its important solar radiation resource and ambient temperature. Based on actual measurements of Constantine weather station for the period of April 2020, the performance analysis of a solar chimney which have three times the dimensions of the Manzaneres prototype (Spain) is carried out using of Fluent software. The obtained results show that when the dimensions of the solar chimney are large, the impact of small changes in solar irradiation is negligible. Also, the studied power plant with dimensions of; 584 m height, a diameter of 30 m and a collector diameter of 732 m is capable of producing a monthly average of 72 to 296 MW of electrical energy, this energy production would be sufficient to meet the needs of rural areas located in this region.


2019 ◽  
Vol 7 (1) ◽  
pp. 43-53
Author(s):  
Abbas Jassem Jubear ◽  
Ali Hameed Abd

The heat sink with vertically rectangular interrupted fins was investigated numerically in a natural convection field, with steady-state heat transfer. A numerical study has been conducted using ANSYS Fluent software (R16.1) in order to develop a 3-D numerical model.  The dimensions of the fins are (305 mm length, 100 mm width, 17 mm height, and 9.5 mm space between fins. The number of fins used on the surface is eight. In this study, the heat input was used as follows: 20, 40, 60, 80, 100, and 120 watts. This study focused on interrupted rectangular fins with a different arrangement and angle of the fins. Results show that the addition of interruption in fins in various arrangements will improve the thermal performance of the heat sink, and through the results, a better interruption rate as an equation can be obtained.


Sign in / Sign up

Export Citation Format

Share Document