scholarly journals Study the Effect of Multilayer Single Point Incremental Forming on Residual Stresses for Bottom Plates

2017 ◽  
Vol 13 (3) ◽  
pp. 99-107
Author(s):  
Aseel Hamad Abed ◽  
Aqeel Sabree Bedan ◽  
Mohanad Faeq Noori

Abstract   Knowing the amount of residual stresses and find technological solutions to minimize and control them during the production operation are an important task because great levels of deformation which occurs in single point incremental forming (SPIF), this induce highly non-uniform residual stresses. In this papera propose of a method for multilayer single point incremental forming with change in thickness of the top plate (0.5, 0.7, 0.9) mm and lubrication or material between two plates(polymer, grease, grease with graphite, mos2) to knowing an effect of this method  and parameters on residual stresses for the bottom plates. Also compare these results for the bottom plates with the single plate at same thickness 0.9 mm.The results showed that when increase thickness of the top plate the value of residual stresses will decrease for bottom plates and when used graphite with grease between two plates gives less residual stresses (R.S = 60.173 MPa.) reverse when used Mos2 which will gives a larger residual stresses (R.S = 146.617 MPa.) in the bottom plate. Keywords: Multilayer Single Point Incremental Forming (SPIF), Residual Stresses, Lubrication.

2013 ◽  
Vol 371 ◽  
pp. 148-152 ◽  
Author(s):  
Crina Radu ◽  
Eugen Herghelegiu ◽  
Nicolae Catalin Tampu ◽  
Ion Cristea

Single point incremental forming (SPIF) is a process during which at any moment a very small part of the sample is actually being formed. This progressive highly localised deformation is performed by a simple tool, whose trajectory is numerical controlled by a CNC machine. Since no support for the metal sheet is used during forming, large levels of deformation occur, which in turn, induce highly non-uniform residual stresses that affect the accuracy of the processed parts. The aim of the present paper was to inspect, experimentally and by simulation, the state of the residual stresses induced in SPIFed double frustums of pyramids made by A1050. The hole drilling method was used for the experimental measurements and the LS-Dyna software for simulation.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1461
Author(s):  
Muhammad Ilyas ◽  
Ghulam Hussain ◽  
Haris Rashid ◽  
Mohammed Alkahtani

Incremental sheet forming (ISF) is an economical process for batch production. This paper investigates post-forming mechanical properties with an emphasis on the relationship between residual stresses, strengths, micro-hardness and the strain-hardening exponent. Moreover, the influence of important process parameters on the post-forming tensile properties and hardness is analyzed. A Taguchi statistical analysis method is applied to study the effect of forming parameters and identify the best combinations to enhance the mechanical properties of the commercial aluminum. The results reveal that direct relationships exist for the plots of: (i) the strain-hardening exponent vs. the post-necking strain and (ii) difference of post-forming strengths vs. the strain-hardening exponent. Furthermore, the post-forming yield strength can be enhanced by 66.9% through the Single Point Incremental Forming (SPIF). Similarly, the ductility can be doubled by conducting the SPIF after performing the annealing of the as-received rolled sheet. In the present study, parts formed at a wall angle (θ) of 40° with a tool diameter (d) of 6 mm exhibit the highest strength. Moreover, most ductile parts will be obtained at ω = 1500 rpm, d = 22 mm and θ = 20°. It has also been shown that the compressive residual stresses are favorable for higher yield strength and improve hardness of the formed parts.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2542 ◽  
Author(s):  
Cecilio López ◽  
Alex Elías-Zúñiga ◽  
Isaac Jiménez ◽  
Oscar Martínez-Romero ◽  
Héctor. R. Siller ◽  
...  

This paper focuses on investigating the residual stress values associated with a part fabricated by Selective Laser Melting technology (SLM) when this is subjected further to forces on single point incremental forming (SPIF) operation of variable wall angle. The residual stresses induced by the SLM manufacturing process on the fabricated AlSi10Mg metallic sheets, as well as those produced during their forming SPIF operation were determined by X-ray diffraction (XRD) measurements. Significant residual stress levels of variation, positive or negative, along the metallic sample were observed because of the bending effects induced by the SPIF processes. It is also shown how the wall thickness varies along the additive manufactured SPIFed part as well as the morphology of the melting pools as a function of the deformation depth.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 656 ◽  
Author(s):  
Fabian Maaß ◽  
Marlon Hahn ◽  
A. Erman Tekkaya

The residual stress state of a sheet metal component manufactured by metal forming has a significant influence on the mechanical properties, and thus determines the time until the component fails, especially for dynamic loads. The origin of the resulting residual stress state of incrementally formed parts with regard to the forming mechanisms of shearing, bending, and the normal stress component is still under investigation. The relationship between the process parameters, the forming mechanisms, and the resulting residual stress state for a complex part geometry manufactured by single point incremental forming (SPIF) is presented in this publication. For this purpose, a validated numerical process model is used to analyze the influence of the step-down increment Δz for truncated cones on the characteristics of the forming mechanisms and the resulting residual stress state. For the first time the forming mechanisms are evaluated numerically on both sides of the formed component. A relationship between the process parameters, forming mechanisms, residual stresses, and the mechanical properties of an incrementally formed component is shown. Shearing-induced hardening is identified as a relevant influence on the residual stress state of cones.


2019 ◽  
Vol 14 (2) ◽  
pp. 1-13
Author(s):  
Aqeel S Sabree Bedan ◽  
Halah Ali H Habeeb

Incremental forming is a flexible sheet metal forming process which is performed by utilizing simple tools to locally deform a sheet of metal along a predefined tool path without using of dies. This work presents the single point incremental forming process for producing pyramid geometry and studies the effect of tool geometry, tool diameter, and spindle speed on the residual stresses. The residual stresses were measured by ORIONRKS 6000 test measuring instrument. This instrument was used with four angles of (0º,15º,30º, and 45º) and the average value of residual stresses was determined, the value of the residual stress in the original blanks was (10.626 MPa). The X-ray diffraction technology was used to measure the residual stresses. The sheet material used was Aluminum alloy (AL1050) with thickness of (0.9 mm). The experimental tests in this work were done on the computer numerical control (CNC) vertical milling machine. The extracted results from the single point incremental forming process were analyzed using analysis of variance (ANOVA) to predict the effect of forming parameters on the residual stresses. The optimum value of the residual stresses (55.024 MPa) was found when using the flat end with round corner tool and radius of (3 mm), wall angle of (55°) and a rotational speed of the tool of (800 rpm). The minimum value of the residual stresses (24.389MPa) was found when using hemispherical tool with diameter of (12 mm), wall angle of (45°) and a rotational speed of the tool of (800 rpm).  


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Yang Mingshun ◽  
Bai Lang ◽  
Lin Yunbo ◽  
Li Yan ◽  
Yuan Qilong ◽  
...  

With the more and more complexity demands of the market, the geometric accuracy of the part has become the main factor restricting the development of single point incremental forming technology (SPIF). For this reason, with the truncated cone as the target part, the radial accuracy error generation mechanism was analyzed from the aspects of sheet springback and residual stress distribution. Four factors and three levels of surface response experiments were designed using the Box-Behnken Design (BBD) for tool head diameter, layer spacing, sheet thickness, and wall angle. The single and interactive influence law of the process parameters on the radial accuracy was obtained. In response to the above research results, the ultrasonic vibration was introduced into the process of SPIF to reduce springback by reducing residual stress. The influence of vibration parameters on the accuracy was obtained through experiments. The results showed that ultrasonic vibration could effectively improve and control the accuracy of the part.


2020 ◽  
Vol 38 (8A) ◽  
pp. 1137-1142
Author(s):  
Baqer A. Ahmed ◽  
Saad K. Shather ◽  
Wisam K. Hamdan

In this paper the Magnetic Abrasive Finishing (MAF) was utilized after Single Point Incremental Forming (SPIF) process as a combined finishing process. Firstly, the Single Point Incremental forming was form the truncated cone made from low carbon steel (1008-AISI) based on Z-level tool path then the magnetic abrasive finishing process was applied on the surface of the formed product. Box-Behnken design of experiment in Minitab 17 software was used in this study. The influences of different parameters (feed rate, machining step size, coil current and spindle speed) on change in Micro-Vickers hardness were studied. The maximum and minimum change in Micro-Vickers hardness that achieved from all the experiments were (40.4 and 1.1) respectively. The contribution percent of (feed rate, machining step size, coil current and spindle speed) were (7.1, 18.068, 17.376 and 37.894) % respectively. After MAF process all the micro surface cracks that generated on the workpiece surface was completely removed from the surface.


Sign in / Sign up

Export Citation Format

Share Document