scholarly journals Phytotoxicity of Salvinia molesta in Diesel Exposure

2021 ◽  
Vol 17 (3) ◽  
pp. 13-21
Author(s):  
Israa Abdulwahab Al-Baldawi ◽  
Siti Rozaimah Sheikh Abdullah ◽  
Nur’ Izzati Ismail ◽  
Asia Fadhile Almanso ◽  
Salwa Shamran Jasim

Phytoremediation is one of the methods to remove various types of pollutants from water and soil using plants. Salvinia molesta, an aquatic plant, is chosen in this study to determine its ability to degrade diesel as the pollutant in synthetic wastewater with different diesel concentrations (0, 8,700, 17,400, and 26,100 mg/L) for 14 days. Total petroleum hydrocarbon (TPH) has been used as an indicator to represent diesel concentration variation in wastewater. Degradation of TPH was 85.1% for diesel concentration of 8,700 mg/L, compared with only 53.9% in the corresponding control without plant. While, acute toxicity on S. molesta exposed in diesel concentrations of 17,400 and 26,100 mg/L was observed and eventually had caused the plants to die after 14 days of exposure. Additionally, throughout the phytotoxicity test, the biomass of S. molesta was found to fluctuate confirming inhibition on plant to survive with diesel contaminated water compared with the corresponding control without contaminant. Based on the results obtained it is suggested to decrease diesel concentration less than 8,700 mg/L in future study due to insolubility of diesel in water and the toxicity to the aquatic plants

Agro-Science ◽  
2020 ◽  
Vol 19 (4) ◽  
pp. 18-23
Author(s):  
S.O. Ajagbe

Aquatic plants are important in freshwater ecosystems. They provide food, shelter, spawning and nursery grounds for fish. They are usually found  at the littoral parts of freshwater ecosystems. The abundance, distribution and diversity of aquatic plant of Ikere-gorge, Iseyin, Nigeria were  examined between January 2017 and December 2018. There are twelve fishing villages in Ikere-gorge and four villages were randomly selected. Aquatic plants were sampled and collected with the help of hired fishermen. The collected aquatic plant samples were identified at the Forest  Herbarium of the Forestry Research Institute of Nigeria with appropriate keys. This work identified 13 families and 23 species of aquatic plants.  Cyperaceae family recorded the highest (4) number of individual species while Salvinia molesta had the highest abundance in all the sampling sites. The ecological classification of the aquatic plants showed that 14 species are emergent; 7 species floating and 3 species submerged. Site C had the most abundance (9220) of aquatic plants, followed by site D (8490), site B (8130) and site A (7940). The gamma (γ) and beta (β) diversities were 23 and 0.01 respectively. The alpha (α) diversity included Dominance (0.08), Simpson (0.92) and Shannon-Wiener (2.72) respectively. These results show that Salvinia molesta and Najas guadalupensis are the most and least abundant aquatic plants in Ikere-gorge respectively; which may be due to  their ecological status. Moreover, management of aquatic plants is an integral part of fisheries management for sustainable fisheries. Therefore, their management is essential for the maintenance of aquatic biodiversity. Key words: aquatic plants, diversity, emergent, floating, submerged


2015 ◽  
Vol 74 ◽  
pp. 463-473 ◽  
Author(s):  
Israa Abdulwahab Al-Baldawi ◽  
Siti Rozaimah Sheikh Abdullah ◽  
Nurina Anuar ◽  
Fatihah Suja ◽  
Idris Mushrifah

1997 ◽  
Vol 1997 (1) ◽  
pp. 1000-1002 ◽  
Author(s):  
Danica C. Mueller ◽  
James S. Bonner ◽  
Robin L. Autenrieth

ABSTRACT Toxicological monitoring was conducted on an estuarine marshland in the Houston Ship Channel following a local oil spill. Acute toxicity of petroleum-contaminated sediments, as determined by the Microtox Bioassay, was used to monitor intrinsic recovery of the impacted marsh. Sediment toxicity was determined by performing the Microtox 100% test on elutriates from wet sediment samples collected over a 7-month period following the spill. Toxic responses were examined for spatial and temporal relationships and were compared to various parameters of interest, including total petroleum hydrocarbon (TPH), total extractable materials (commonly referred to as oil and grease [O&G]), and GC/MS-quantified total saturates and aromatics. Toxicity was randomly distributed within the study site and decreased with time. Acute toxicity was correlated with TPH measurements and moderately correlated with GC/MS-quantified saturate concentrations. However, toxicity levels were not correlated with O&G or GC/MS aromatic summations.


2020 ◽  
Vol 8 (1) ◽  
pp. 1
Author(s):  
Media Fitri Isma Nugraha ◽  
Ina Erlinawati ◽  
Deni Sahroni ◽  
Wening Enggarini ◽  
Rossa Yunita ◽  
...  

Bucephalandra sp. is a genus of aquatic plants endemic to Borneo Island, representing the Araceae family. Bucephalandra sp. is famous for its ornamental aquatic plants which are usually used in aquascaping. These aquatic plants come at fantastic prices, e.g. ±300 euros in European ornamental aquatic markets and Rp 50,000 – 700,000 in Indonesian aquatic plant markets. We collected 195 types of Bucephalandra from an ornamental aquatic plant market in Jakarta. In the market, they are sold under its commercial name. Therefore, the aim of this study is to collect and identify the species of all Bucephalandra types in the aquatic plant commercial market. These species that we identified are based on botanical taxonomist identification in the Herbarium Bogoriense Department Botany – Research Centre for Biology – Indonesian Institute of Science (LIPI) Cibinong. The result of this study is from our collection (195 types) of which 102 types are Bucephalandra Motleyana Schott species and 90 types are the other species of Bucephalandra.


1991 ◽  
Vol 23 (7-9) ◽  
pp. 1503-1507 ◽  
Author(s):  
L. M. Triet ◽  
N. T. Viet ◽  
T. V. Thinh ◽  
H. D. Cuong ◽  
J. C. L. van Buuren

The effluent from activated sludge treatment of petroleum wastewater was treated with the aid of a ponding system using aquatic plants (Water Hyacinth, Chlorella, Reed). A good result was obtained in this study. Pilot pond system shows that the purification efficiency depends on the residence time of about 14 days. The petroleum removal waa 97-98 %, the COD removal was from 88-93 %. The dissolved oxygen amount (with Chlorella) increased from 0.7 mg/l to 9.8 mg/l and the pH increased from 6.9 to 8-8.6. The application of 3 step biological pond with the use of Water Hyacinth, Chlorella, Reeds for post treatment of petroleum wastewater is appropriate in Vietnam.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3849
Author(s):  
Olesia Havryliuk ◽  
Vira Hovorukha ◽  
Oleksandr Savitsky ◽  
Volodymyr Trilis ◽  
Antonina Kalinichenko ◽  
...  

The aquatic plant Pistia stratiotes L. is environmentally hazardous and requires effective methods for its utilization. The harmfulness of these plants is determined by their excessive growth in water bodies and degradation of local aquatic ecosystems. Mechanical removal of these plants is widespread but requires fairly resource-intensive technology. However, these aquatic plants are polymer-containing substrates and have a great potential for conversion into bioenergy. The aim of the work was to determine the main patterns of Pistia stratiotes L. degradation via granular microbial preparation (GMP) to obtain biomethane gas while simultaneously detoxifying toxic copper compounds. The composition of the gas phase was determined via gas chromatography. The pH and redox potential parameters were determined potentiometrically, and Cu(II) concentration photocolorimetrically. Applying the preparation, high efficiency of biomethane fermentation of aquatic plants and Cu(II) detoxification were achieved. Biomethane yield reached 68.0 ± 11.1 L/kg VS of Pistia stratiotes L. biomass. The plants’ weight was decreased by 9 times. The Cu(II) was completely removed after 3 and 10 days of fermentation from initial concentrations of 100 ppm and 200 ppm, respectively. The result confirms the possibility of using the GMP to obtain biomethane from environmentally hazardous substrates and detoxify copper-contaminated fluids.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 741
Author(s):  
Rocío Fernández-Zamudio ◽  
Pablo García-Murillo ◽  
Carmen Díaz-Paniagua

In temporary ponds, seed germination largely determines how well aquatic plant assemblages recover after dry periods. Some aquatic plants have terrestrial morphotypes that can produce seeds even in dry years. Here, we performed an experiment to compare germination patterns for seeds produced by aquatic and terrestrial morphotypes of Ranunculus peltatus subsp. saniculifolius over the course of five inundation events. During the first inundation event, percent germination was higher for terrestrial morphotype seeds (36.1%) than for aquatic morphotype seeds (6.1%). Seed germination peaked for both groups during the second inundation event (terrestrial morphotype: 47%; aquatic morphotype: 34%). Even after all five events, some viable seeds had not yet germinated (terrestrial morphotype: 0.6%; aquatic morphotype: 5%). We also compared germination patterns for the two morphotypes in Callitriche brutia: the percent germination was higher for terrestrial morphotype seeds (79.5%) than for aquatic morphotype seeds (41.9%). Both aquatic plant species use two complementary strategies to ensure population persistence despite the unpredictable conditions of temporary ponds. First, plants can produce seeds with different dormancy periods that germinate during different inundation periods. Second, plants can produce terrestrial morphotypes, which generate more seeds during dry periods, allowing for re-establishment when conditions are once again favorable.


Sign in / Sign up

Export Citation Format

Share Document