scholarly journals Effectiveness Assessment on Overseas Farm Land Investments in Ethiopia

2018 ◽  
Vol 2 (4) ◽  
pp. 193
Author(s):  
Getamesay Tefera ◽  
Prof. Xinhai Lu

<p><em>The wave of acquiring large-scale farmland investments for overseas both by the private and state-owned company after the 2007/2008 food and energy crisis has brought a lot of attention worldwide among scholars, media experts, and activist. Sooner or later this huge wave towards overseas large-scale farmland investment has raised a conflicting debate among scholars and developmental practitioners on its significance. In this study we investigate effectiveness levels of those overseas farmland investors, who acquire land in Ethiopia from 1995-2016, using time series data for said period collected from the databank of Ethiopian investment agency. We applied descriptive and inferential statistical analysis using E-views version-9. Finally, the findings indicate that effectiveness of overseas farmland investments for those projects that possess the license and that got the land is about 67.4 per cent. The regression result indicates as there is a significant relationship between origin of the investor’s country (0.0039) and farm land size (0.0000) with a P value less than 5 per cent. The result indicates and also substantiates those who perceive the activity as more of land acquisition that the investors are failed to invest appropriately after they possessed the land. Finally, the findings greatly contribute for policy makers and also for implementing appropriate land investment strategy in the whole. </em></p>

2019 ◽  
Vol 3 (1) ◽  
pp. 1
Author(s):  
Getamesay Tefera ◽  
Prof. Xinhai Lu

<em>In the past few decades there has been growing interest among multinational companies towards investment in overseas farmland. The whole process and result of such investments has become a hot topic of debate among scholars, media experts, social activists, and policy practitioners. The huge wave of overseas large scale farm land investment has generated conflicting views among scholars and developmental policy practitioners regarding its significance. Ethiopia has been in the spotlight in this regard as the government was avowed to attract investment in farmland and, in return, many foreign companies flocked to acquire large tracts of farmland, often dispossessing the local community. In this study we investigate the perceptions of local framers on overseas farmland investments in Ethiopia using a cross sectional survey data. We applied descriptive and inferential statistical analysis using SPSS. The findings indicate that out of the 440 participants covered by the survey 53.6 percent of the respondents were not happy with the activity of the investors’ in their local area. The correlation results indicate that there is significant positive relationship between the age, family Size, and off farm employment of the respondents with that of their perception, whereas there is negative correlation between migration statuses, educational level and farm land size with that of their satisfaction level. Finally the logistic result indicates perception of local farmers has significant relationship with age (0.001) and of farm employment of the respondents (0.0000) with P value less than 1 percent. Besides Migration status (.036), family size (.044), educational level (.004), income level (.044) and farm land size (.046) has significant association with the perception of the participants with P value of less than 5 and 10 percent, whereas sex (.537) and marital status (.843) of the respondents have no significant relationship with their perception.</em>


1980 ◽  
Vol 45 (2) ◽  
pp. 246-267 ◽  
Author(s):  
Robert L. Hamblin ◽  
Brian L. Pitcher

Several lines of archaeological evidence are presented in this paper to suggest the existence of class warfare among the Classic Maya and of issues that historically have been associated with class conflict. This evidence indicates that class warfare may have halted the rule of the monument-producing, or Classic, elites and precipitated the depopulation of the lowland area. The theory is evaluated quantitatively by testing for time-related mathematical patterns that have been found to characterize large-scale conflicts in historical societies. The information used in the evaluation involves the time series data on the duration of rule by Classic elites as inferred from the production of monuments with Long Count dates at a sample of 82 ceremonial centers. The analyses confirm that the Maya data do exhibit the temporal and geographical patterns predicted from the class conflict explanation of the Classic Maya collapse. Alternative predictions from the other theories are considered but generally not found to be supported by these data.


2020 ◽  
Vol 3 (1) ◽  
pp. 37
Author(s):  
Toyi Maniki Diphagwe ◽  
Bernard Moeketsi Hlalele ◽  
Dibuseng Priscilla Mpakathi

The 2019/20 Australian bushfires burned over 46 million acres of land, killed 34 people and left 3500 individuals homeless. Majority of deaths and buildings destroyed were in New South Wales, while the Northern Territory accounted for approximately 1/3 of the burned area. Many of the buildings that were lost were farm buildings, adding to the challenge of agricultural recovery that is already complex because of ash-covered farmland accompanied by historic levels of drought. The current research therefore aimed at characterising veldfire risk in the study area using Keetch-Byram Drought Index (KBDI). A 39-year-long time series data was obtained from an online NASA database. Both homogeneity and stationarity tests were deployed using a non-parametric Pettitt’s and Dicky-Fuller tests respectively for data quality checks. Major results revealed a non-significant two-tailed Mann Kendall trend test with a p-value = 0.789 > 0.05 significance level. A suitable probability distribution was fitted to the annual KBDI time series where both Kolmogorov-Smirnov and Chi-square tests revealed Gamma (1) as a suitably fitted probability distribution. Return level computation from the Gamma (1) distribution using XLSTAT computer software resulted in a cumulative 40-year return period of moderate to high fire risk potential. With this low probability and 40-year-long return level, the study found the area less prone to fire risks detrimental to animal and crop production. More agribusiness investments can safely be executed in the Northern Territory without high risk aversion.


2021 ◽  
Author(s):  
Sadnan Al Manir ◽  
Justin Niestroy ◽  
Maxwell Adam Levinson ◽  
Timothy Clark

Introduction: Transparency of computation is a requirement for assessing the validity of computed results and research claims based upon them; and it is essential for access to, assessment, and reuse of computational components. These components may be subject to methodological or other challenges over time. While reference to archived software and/or data is increasingly common in publications, a single machine-interpretable, integrative representation of how results were derived, that supports defeasible reasoning, has been absent. Methods: We developed the Evidence Graph Ontology, EVI, in OWL 2, with a set of inference rules, to provide deep representations of supporting and challenging evidence for computations, services, software, data, and results, across arbitrarily deep networks of computations, in connected or fully distinct processes. EVI integrates FAIR practices on data and software, with important concepts from provenance models, and argumentation theory. It extends PROV for additional expressiveness, with support for defeasible reasoning. EVI treats any com- putational result or component of evidence as a defeasible assertion, supported by a DAG of the computations, software, data, and agents that produced it. Results: We have successfully deployed EVI for very-large-scale predictive analytics on clinical time-series data. Every result may reference its own evidence graph as metadata, which can be extended when subsequent computations are executed. Discussion: Evidence graphs support transparency and defeasible reasoning on results. They are first-class computational objects, and reference the datasets and software from which they are derived. They support fully transparent computation, with challenge and support propagation. The EVI approach may be extended to include instruments, animal models, and critical experimental reagents.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jing Zhao ◽  
Shubo Liu ◽  
Xingxing Xiong ◽  
Zhaohui Cai

Privacy protection is one of the major obstacles for data sharing. Time-series data have the characteristics of autocorrelation, continuity, and large scale. Current research on time-series data publication mainly ignores the correlation of time-series data and the lack of privacy protection. In this paper, we study the problem of correlated time-series data publication and propose a sliding window-based autocorrelation time-series data publication algorithm, called SW-ATS. Instead of using global sensitivity in the traditional differential privacy mechanisms, we proposed periodic sensitivity to provide a stronger degree of privacy guarantee. SW-ATS introduces a sliding window mechanism, with the correlation between the noise-adding sequence and the original time-series data guaranteed by sequence indistinguishability, to protect the privacy of the latest data. We prove that SW-ATS satisfies ε-differential privacy. Compared with the state-of-the-art algorithm, SW-ATS is superior in reducing the error rate of MAE which is about 25%, improving the utility of data, and providing stronger privacy protection.


Sensor Review ◽  
2019 ◽  
Vol 39 (2) ◽  
pp. 208-217 ◽  
Author(s):  
Jinghan Du ◽  
Haiyan Chen ◽  
Weining Zhang

Purpose In large-scale monitoring systems, sensors in different locations are deployed to collect massive useful time-series data, which can help in real-time data analytics and its related applications. However, affected by hardware device itself, sensor nodes often fail to work, resulting in a common phenomenon that the collected data are incomplete. The purpose of this study is to predict and recover the missing data in sensor networks. Design/methodology/approach Considering the spatio-temporal correlation of large-scale sensor data, this paper proposes a data recover model in sensor networks based on a deep learning method, i.e. deep belief network (DBN). Specifically, when one sensor fails, the historical time-series data of its own and the real-time data from surrounding sensor nodes, which have high similarity with a failure observed using the proposed similarity filter, are collected first. Then, the high-level feature representation of these spatio-temporal correlation data is extracted by DBN. Moreover, to determine the structure of a DBN model, a reconstruction error-based algorithm is proposed. Finally, the missing data are predicted based on these features by a single-layer neural network. Findings This paper collects a noise data set from an airport monitoring system for experiments. Various comparative experiments show that the proposed algorithms are effective. The proposed data recovery model is compared with several other classical models, and the experimental results prove that the deep learning-based model can not only get a better prediction accuracy but also get a better performance in training time and model robustness. Originality/value A deep learning method is investigated in data recovery task, and it proved to be effective compared with other previous methods. This might provide a practical experience in the application of a deep learning method.


Algorithms ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 95 ◽  
Author(s):  
Johannes Stübinger ◽  
Katharina Adler

This paper develops the generalized causality algorithm and applies it to a multitude of data from the fields of economics and finance. Specifically, our parameter-free algorithm efficiently determines the optimal non-linear mapping and identifies varying lead–lag effects between two given time series. This procedure allows an elastic adjustment of the time axis to find similar but phase-shifted sequences—structural breaks in their relationship are also captured. A large-scale simulation study validates the outperformance in the vast majority of parameter constellations in terms of efficiency, robustness, and feasibility. Finally, the presented methodology is applied to real data from the areas of macroeconomics, finance, and metal. Highest similarity show the pairs of gross domestic product and consumer price index (macroeconomics), S&P 500 index and Deutscher Aktienindex (finance), as well as gold and silver (metal). In addition, the algorithm takes full use of its flexibility and identifies both various structural breaks and regime patterns over time, which are (partly) well documented in the literature.


2020 ◽  
Vol 496 (1) ◽  
pp. 629-637
Author(s):  
Ce Yu ◽  
Kun Li ◽  
Shanjiang Tang ◽  
Chao Sun ◽  
Bin Ma ◽  
...  

ABSTRACT Time series data of celestial objects are commonly used to study valuable and unexpected objects such as extrasolar planets and supernova in time domain astronomy. Due to the rapid growth of data volume, traditional manual methods are becoming extremely hard and infeasible for continuously analysing accumulated observation data. To meet such demands, we designed and implemented a special tool named AstroCatR that can efficiently and flexibly reconstruct time series data from large-scale astronomical catalogues. AstroCatR can load original catalogue data from Flexible Image Transport System (FITS) files or data bases, match each item to determine which object it belongs to, and finally produce time series data sets. To support the high-performance parallel processing of large-scale data sets, AstroCatR uses the extract-transform-load (ETL) pre-processing module to create sky zone files and balance the workload. The matching module uses the overlapped indexing method and an in-memory reference table to improve accuracy and performance. The output of AstroCatR can be stored in CSV files or be transformed other into formats as needed. Simultaneously, the module-based software architecture ensures the flexibility and scalability of AstroCatR. We evaluated AstroCatR with actual observation data from The three Antarctic Survey Telescopes (AST3). The experiments demonstrate that AstroCatR can efficiently and flexibly reconstruct all time series data by setting relevant parameters and configuration files. Furthermore, the tool is approximately 3× faster than methods using relational data base management systems at matching massive catalogues.


Sign in / Sign up

Export Citation Format

Share Document