A deep learning method for data recovery in sensor networks using effective spatio-temporal correlation data

Sensor Review ◽  
2019 ◽  
Vol 39 (2) ◽  
pp. 208-217 ◽  
Author(s):  
Jinghan Du ◽  
Haiyan Chen ◽  
Weining Zhang

Purpose In large-scale monitoring systems, sensors in different locations are deployed to collect massive useful time-series data, which can help in real-time data analytics and its related applications. However, affected by hardware device itself, sensor nodes often fail to work, resulting in a common phenomenon that the collected data are incomplete. The purpose of this study is to predict and recover the missing data in sensor networks. Design/methodology/approach Considering the spatio-temporal correlation of large-scale sensor data, this paper proposes a data recover model in sensor networks based on a deep learning method, i.e. deep belief network (DBN). Specifically, when one sensor fails, the historical time-series data of its own and the real-time data from surrounding sensor nodes, which have high similarity with a failure observed using the proposed similarity filter, are collected first. Then, the high-level feature representation of these spatio-temporal correlation data is extracted by DBN. Moreover, to determine the structure of a DBN model, a reconstruction error-based algorithm is proposed. Finally, the missing data are predicted based on these features by a single-layer neural network. Findings This paper collects a noise data set from an airport monitoring system for experiments. Various comparative experiments show that the proposed algorithms are effective. The proposed data recovery model is compared with several other classical models, and the experimental results prove that the deep learning-based model can not only get a better prediction accuracy but also get a better performance in training time and model robustness. Originality/value A deep learning method is investigated in data recovery task, and it proved to be effective compared with other previous methods. This might provide a practical experience in the application of a deep learning method.

Author(s):  
Ze Ren Luo ◽  
Yang Zhou ◽  
Yu Xing Li ◽  
Liang Guo ◽  
Juan Juan Tuo ◽  
...  

Sedimentary microfacies division is the basis of oil and gas exploration research. The traditional sedimentary microfacies division mainly depends on human experience, which is greatly influenced by human factor and is low in efficiency. Although deep learning has its advantage in solving complex nonlinear problems, there is no effective deep learning method to solve sedimentary microfacies division so far. Therefore, this paper proposes a deep learning method based on DMC-BiLSTM for intelligent division of well-logging—sedimentary microfacies. First, the original curve is reconstructed multi-dimensionally by trend decomposition and median filtering, and spatio-temporal correlation clustering features are extracted from the reconstructed matrix by Kmeans. Then, taking reconstructed features, original curve features and clustering features as input, the prediction types of sedimentary microfacies at current depth are obtained based on BiLSTM. Experimental results show that this method can effectively classify sedimentary microfacies with its recognition efficiency reaching 96.84%.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zulkifli Halim ◽  
Shuhaida Mohamed Shuhidan ◽  
Zuraidah Mohd Sanusi

PurposeIn the previous study of financial distress prediction, deep learning techniques performed better than traditional techniques over time-series data. This study investigates the performance of deep learning models: recurrent neural network, long short-term memory and gated recurrent unit for the financial distress prediction among the Malaysian public listed corporation over the time-series data. This study also compares the performance of logistic regression, support vector machine, neural network, decision tree and the deep learning models on single-year data.Design/methodology/approachThe data used are the financial data of public listed companies that been classified as PN17 status (distress) and non-PN17 (not distress) in Malaysia. This study was conducted using machine learning library of Python programming language.FindingsThe findings indicate that all deep learning models used for this study achieved 90% accuracy and above with long short-term memory (LSTM) and gated recurrent unit (GRU) getting 93% accuracy. In addition, deep learning models consistently have good performance compared to the other models over single-year data. The results show LSTM and GRU getting 90% and recurrent neural network (RNN) 88% accuracy. The results also show that LSTM and GRU get better precision and recall compared to RNN. The findings of this study show that the deep learning approach will lead to better performance in financial distress prediction studies. To be added, time-series data should be highlighted in any financial distress prediction studies since it has a big impact on credit risk assessment.Research limitations/implicationsThe first limitation of this study is the hyperparameter tuning only applied for deep learning models. Secondly, the time-series data are only used for deep learning models since the other models optimally fit on single-year data.Practical implicationsThis study proposes recommendations that deep learning is a new approach that will lead to better performance in financial distress prediction studies. Besides that, time-series data should be highlighted in any financial distress prediction studies since the data have a big impact on the assessment of credit risk.Originality/valueTo the best of authors' knowledge, this article is the first study that uses the gated recurrent unit in financial distress prediction studies based on time-series data for Malaysian public listed companies. The findings of this study can help financial institutions/investors to find a better and accurate approach for credit risk assessment.


2020 ◽  
Vol 10 (15) ◽  
pp. 5191
Author(s):  
Yıldız Karadayı ◽  
Mehmet N. Aydin ◽  
A. Selçuk Öğrenci

Multivariate time-series data with a contextual spatial attribute have extensive use for finding anomalous patterns in a wide variety of application domains such as earth science, hurricane tracking, fraud, and disease outbreak detection. In most settings, spatial context is often expressed in terms of ZIP code or region coordinates such as latitude and longitude. However, traditional anomaly detection techniques cannot handle more than one contextual attribute in a unified way. In this paper, a new hybrid approach based on deep learning is proposed to solve the anomaly detection problem in multivariate spatio-temporal dataset. It works under the assumption that no prior knowledge about the dataset and anomalies are available. The architecture of the proposed hybrid framework is based on an autoencoder scheme, and it is more efficient in extracting features from the spatio-temporal multivariate datasets compared to the traditional spatio-temporal anomaly detection techniques. We conducted extensive experiments using buoy data of 2005 from National Data Buoy Center and Hurricane Katrina as ground truth. Experiments demonstrate that the proposed model achieves more than 10% improvement in accuracy over the methods used in the comparison where our model jointly processes the spatial and temporal dimensions of the contextual data to extract features for anomaly detection.


2017 ◽  
Vol 10 (2) ◽  
pp. 145-165 ◽  
Author(s):  
Kehe Wu ◽  
Yayun Zhu ◽  
Quan Li ◽  
Ziwei Wu

Purpose The purpose of this paper is to propose a data prediction framework for scenarios which require forecasting demand for large-scale data sources, e.g., sensor networks, securities exchange, electric power secondary system, etc. Concretely, the proposed framework should handle several difficult requirements including the management of gigantic data sources, the need for a fast self-adaptive algorithm, the relatively accurate prediction of multiple time series, and the real-time demand. Design/methodology/approach First, the autoregressive integrated moving average-based prediction algorithm is introduced. Second, the processing framework is designed, which includes a time-series data storage model based on the HBase, and a real-time distributed prediction platform based on Storm. Then, the work principle of this platform is described. Finally, a proof-of-concept testbed is illustrated to verify the proposed framework. Findings Several tests based on Power Grid monitoring data are provided for the proposed framework. The experimental results indicate that prediction data are basically consistent with actual data, processing efficiency is relatively high, and resources consumption is reasonable. Originality/value This paper provides a distributed real-time data prediction framework for large-scale time-series data, which can exactly achieve the requirement of the effective management, prediction efficiency, accuracy, and high concurrency for massive data sources.


Author(s):  
Taesung Kim ◽  
Jinhee Kim ◽  
Wonho Yang ◽  
Hunjoo Lee ◽  
Jaegul Choo

To prevent severe air pollution, it is important to analyze time-series air quality data, but this is often challenging as the time-series data is usually partially missing, especially when it is collected from multiple locations simultaneously. To solve this problem, various deep-learning-based missing value imputation models have been proposed. However, often they are barely interpretable, which makes it difficult to analyze the imputed data. Thus, we propose a novel deep learning-based imputation model that achieves high interpretability as well as shows great performance in missing value imputation for spatio-temporal data. We verify the effectiveness of our method through quantitative and qualitative results on a publicly available air-quality dataset.


2020 ◽  
Vol 12 (23) ◽  
pp. 4000
Author(s):  
Petteri Nevavuori ◽  
Nathaniel Narra ◽  
Petri Linna ◽  
Tarmo Lipping

Unmanned aerial vehicle (UAV) based remote sensing is gaining momentum worldwide in a variety of agricultural and environmental monitoring and modelling applications. At the same time, the increasing availability of yield monitoring devices in harvesters enables input-target mapping of in-season RGB and crop yield data in a resolution otherwise unattainable by openly availabe satellite sensor systems. Using time series UAV RGB and weather data collected from nine crop fields in Pori, Finland, we evaluated the feasibility of spatio-temporal deep learning architectures in crop yield time series modelling and prediction with RGB time series data. Using Convolutional Neural Networks (CNN) and Long-Short Term Memory (LSTM) networks as spatial and temporal base architectures, we developed and trained CNN-LSTM, convolutional LSTM and 3D-CNN architectures with full 15 week image frame sequences from the whole growing season of 2018. The best performing architecture, the 3D-CNN, was then evaluated with several shorter frame sequence configurations from the beginning of the season. With 3D-CNN, we were able to achieve 218.9 kg/ha mean absolute error (MAE) and 5.51% mean absolute percentage error (MAPE) performance with full length sequences. The best shorter length sequence performance with the same model was 292.8 kg/ha MAE and 7.17% MAPE with four weekly frames from the beginning of the season.


2022 ◽  
Vol 4 ◽  
Author(s):  
Lasitha Vidyaratne ◽  
Adam Carpenter ◽  
Tom Powers ◽  
Chris Tennant ◽  
Khan M. Iftekharuddin ◽  
...  

This work investigates the efficacy of deep learning (DL) for classifying C100 superconducting radio-frequency (SRF) cavity faults in the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. CEBAF is a large, high-power continuous wave recirculating linac that utilizes 418 SRF cavities to accelerate electrons up to 12 GeV. Recent upgrades to CEBAF include installation of 11 new cryomodules (88 cavities) equipped with a low-level RF system that records RF time-series data from each cavity at the onset of an RF failure. Typically, subject matter experts (SME) analyze this data to determine the fault type and identify the cavity of origin. This information is subsequently utilized to identify failure trends and to implement corrective measures on the offending cavity. Manual inspection of large-scale, time-series data, generated by frequent system failures is tedious and time consuming, and thereby motivates the use of machine learning (ML) to automate the task. This study extends work on a previously developed system based on traditional ML methods (Tennant and Carpenter and Powers and Shabalina Solopova and Vidyaratne and Iftekharuddin, Phys. Rev. Accel. Beams, 2020, 23, 114601), and investigates the effectiveness of deep learning approaches. The transition to a DL model is driven by the goal of developing a system with sufficiently fast inference that it could be used to predict a fault event and take actionable information before the onset (on the order of a few hundred milliseconds). Because features are learned, rather than explicitly computed, DL offers a potential advantage over traditional ML. Specifically, two seminal DL architecture types are explored: deep recurrent neural networks (RNN) and deep convolutional neural networks (CNN). We provide a detailed analysis on the performance of individual models using an RF waveform dataset built from past operational runs of CEBAF. In particular, the performance of RNN models incorporating long short-term memory (LSTM) are analyzed along with the CNN performance. Furthermore, comparing these DL models with a state-of-the-art fault ML model shows that DL architectures obtain similar performance for cavity identification, do not perform quite as well for fault classification, but provide an advantage in inference speed.


2021 ◽  
Vol 15 (6) ◽  
pp. 1-25
Author(s):  
Jinliang Deng ◽  
Xiusi Chen ◽  
Zipei Fan ◽  
Renhe Jiang ◽  
Xuan Song ◽  
...  

Transportation demand forecasting is a topic of large practical value. However, the model that fits the demand of one transportation by only considering the historical data of its own could be vulnerable since random fluctuations could easily impact the modeling. On the other hand, common factors like time and region attribute, drive the evolution demand of different transportation, leading to a co-evolving intrinsic property between different kinds of transportation. In this work, we focus on exploring the co-evolution between different modes of transport, e.g., taxi demand and shared-bike demand. Two significant challenges impede the discovery of the co-evolving pattern: (1) diversity of the co-evolving correlation, which varies from region to region and time to time. (2) Multi-modal data fusion. Taxi demand and shared-bike demand are time-series data, which have different representations with the external factors. Moreover, the distribution of taxi demand and bike demand are not identical. To overcome these challenges, we propose a novel method, known as co-evolving spatial temporal neural network (CEST). CEST learns a multi-view demand representation for each mode of transport, extracts the co-evolving pattern, then predicts the demand for the target transportation based on multi-scale representation, which includes fine-scale demand information and coarse-scale pattern information. We conduct extensive experiments to validate the superiority of our model over the state-of-art models.


Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 360-374
Author(s):  
Yuan Pei ◽  
Lei Zhenglin ◽  
Zeng Qinghui ◽  
Wu Yixiao ◽  
Lu Yanli ◽  
...  

Abstract The load of the showcase is a nonlinear and unstable time series data, and the traditional forecasting method is not applicable. Deep learning algorithms are introduced to predict the load of the showcase. Based on the CEEMD–IPSO–LSTM combination algorithm, this paper builds a refrigerated display cabinet load forecasting model. Compared with the forecast results of other models, it finally proves that the CEEMD–IPSO–LSTM model has the highest load forecasting accuracy, and the model’s determination coefficient is 0.9105, which is obviously excellent. Compared with other models, the model constructed in this paper can predict the load of showcases, which can provide a reference for energy saving and consumption reduction of display cabinet.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 120043-120065
Author(s):  
Kukjin Choi ◽  
Jihun Yi ◽  
Changhwa Park ◽  
Sungroh Yoon

Sign in / Sign up

Export Citation Format

Share Document