scholarly journals EFFECT OF EFFERVESCENCE IN COMBINATION WITH SUPERDISINTEGRANTS IN THE FORMULATION OF PROPRANOLOL HCL ORAL DISINTEGRATING TABLETS

Author(s):  
Ashok Thulluru ◽  
Veeravalli Kumar Sai ◽  
Pavan Kumar M ◽  
Roshitha B

ABSTRACTObjective: The current research work is intended to formulate propranolol HCl (PLH) as orally disintegrating tablet (ODT). It is also intending to checkthe superiority in a combination of superdisintegrants and effervescent mixture than the use of superdisintegrants alone by a direct compressiontechnique. To fasten the onset of action and thereby enhancing the bioavailability of PLH in comparison to its conventional tablets.Methods: Standard calibration curve of PLH was obtained in pH 6.8 phosphate buffer by spectrophotometric method, drug-excipient compatibilitystudies were carried by Fourier transform infrared (FT-IR) studies. All the formulations were evaluated for pre and postcompression studies.Accelerated stability studies were carried out up to 6 months for the optimized formulation, EF3.Results and Discussion: Superdisintegrants used in the study are compatible with PLH. Pre- and post-compression parameters were within theacceptable limits for all formulations. In vitro dissolution kinetic studies indicate the release of PLH from ODT increases as the concentration ofsuperdisintegrants as well as the ratio of citric acid: NaHCO3 of effervescent mixture increases. Formulations with an effervescent mixture are havingrapid disintegration and dissolution rate when compared to the formulations with superdisintegrants alone. The order of superdisintegrants inenhancing the dissolution rate of PLH is crospovidone (CPV) > croscarmellose sodium (CCS) > sodium starch glycolate (SSG). Formulation, EF3 (10%CPV and 1:3, citric acid: NaHCO3 ratio, respectively) had the highest dissolution efficiency at 10 minutes (DE10=82.74%); the first order dissolutionrate constant (K1=0.141/minutes) with a regression coefficient (r2=0.974) and lesser time for 90% of drug release (t90=4 minutes), was considered asthe optimal ODT in this study. Formulation EF3, passed the test for stability.Conclusion: Hence, an effective PLH ODT was formulated by the direct compression technique with disintegration by combination of superdisintegrantsand effervescent mixture, will fasten the onset of action and enhances the bioavailability of PLH in comparison to its conventional tablets.Keywords: Propranolol HCl, Orally disintegrating tablet, Sodium starch glycolate, Croscarmellose sodium, Crospovidone, Direct compression, In vitrodissolution studies.

2018 ◽  
Vol 10 (5) ◽  
pp. 270
Author(s):  
Asmaa A. Bayoumi

Objective: The scope of this work was to formulate sitagliptin and simvastatin rapidly dissolving tablets. However, simvastatin is practically insoluble in water. For improving its poor oral bioavailability and with the aim of facilitating administration to patients facing problems with swallowing rapidly dissolving tablets were preparedMethods: Tablets were prepared using superdisintegrant addition technique using croscarmellose sodium (Ac-di-sol), sodium starch glycolate (explotab) and crospovidone in different percentages. Evaluation tests such as weight variation, thickness, and content variation, and friability, disintegration, wetting time, in vitro dispersion and in vitro dissolution were carried out.Results: The results showed that the presence of crospovidone could enhance the dissolution rate of simvastatin greatly. The best-optimized formulae found were that F8, F9, and F10 which showed good disintegration and the dissolution rate of simvastatin and sitagliptin was more than 90% after 10 min while the dissolution rate for simvastatin and sitagliptin pure standards was 12% and 30%, respectively after 10 min.Conclusion: Some tablet formulae showed acceptable pharmacotechnical properties and complied with compendium requirements. Results of dissolution studies revealed that F8-F10 showed an increase in the dissolved sitagliptin and simvastatin to be more than 90% after 10 min. 


Author(s):  
INDER KUMAR ◽  
VINAY PANDIT

Objective: In the present investigation, fast dissolving tablets of cefpodoxime proxetil were formulated using superdisintegrants to impart fast disintegration. Methods: In the current study, 12 formulations of fast dissolving tablets of cefpodoxime proxetil were formulated using two different approaches viz., direct compression and sublimation. Three different superdisintegrants viz., croscarmellose sodium, sodium starch glycolate, and crospovidone were used in a different concentration in all the respective formulations. The final powder blend was subjected for the pre-compression evaluation and all the formulations were evaluated for post-compression parameters. Stability studies were also evaluated for the best formulations as per ICH guidelines. Finally, results were statistically analyzed by the application of one way ANOVA test and t-test. Results: Among all the formulations of different approaches, formulation cefpodoxime proxetil 4 (CP4) containing 6% crospovidone as a super disintegrant was showed the best results. In vitro dissolution data revealed that formulation CP4 prepared by direct compression method showed 99.387±0.270% drug release within 15 min whereas the percentage release by formulation prepared by using sublimation showed 83.927±0.735% release. The optimized formulation was further subjected to comparative in vitro study with two marketed formulation of different brands. Conclusion: All the data of all formulations is shows that direct compression approach is the best approach for developing the fast dissolving tablets to enhance the onset of action and bioavailability.


INDIAN DRUGS ◽  
2019 ◽  
Vol 56 (08) ◽  
pp. 84-87
Author(s):  
S Kumar ◽  
J. V. Kumar ◽  
P Singhal ◽  

The aim of the present investigation was to prepare solid dispersion (SD) of the water insoluble drug. Loratadine using super disintegrants as carrier and formulate it as fast dissolving tablets (FDTs) with an objective to improve solubility and enhance dissolution of drug. The SD’s of the drug were prepared by melt dispersion technique using polyethylene glycol (PEG) 6000 in diferent ratios 1 : 2.5, 1 : 5 and 1 : 7.5. The prepared SD formulations were characterized for equilibrium solubility, Fourier Transform Infrared spectroscopy (FTIR) and in vitro dissolution study. The batch containing SD formulation of loratadine showed fastest dissolution (99.87% drug release in 60 min). In this study, fast dissolving tablets were prepared by direct compression method using Croscarmellose sodium, sodium starch glycolate and polyplasdone XL as the super disintegrants. Effect of various super disintegrants on dissolution behavior of tablets was evaluated in phosphate buffer pH 6.8.


Author(s):  
Sudarshan Singh ◽  
S S Shyale ◽  
P Karade

The aim of this study was to design orally disintegrating tablet (ODT) of Lamotrigine. It is an Antiepileptic drug which is widely used in epilepsy. It is also used in simple and complex partial seizures and secondary generalized tonic-clonic seizures. It is poorly water soluble drug (0.46 mg/ml). Thus, an attempt was made to enhance the water solubility by complexation with β-cyclodextrin (1:1 molar ratios). The orally disintegrating tablet of lamotrigine was prepared by direct compression method using different concentration of superdisintegrants such as Sodium starch glycollate, croscarmellose sodium by sublimating agent such as camphor. The formulations were evaluated for weight variation, hardness, friability, drug content, wetting time, in vitro disintegration time and in vitro dissolution studies. The prepared tablets were characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The disintegration time for the complexed tablets prepared by different concentration of superdisintegrants was found to be in range of 32.54 ± 0.50 to 55.12 ± 0.57 sec and wetting time of the formulations was found to be in range of 28.47 ± 0.67 to 52.19 ± 0.72 sec. All the formulation showed almost 100 percent of drug release within 15 min. Among all the formulation F6 and F7 prepared with 18% croscarmellose sodium and camphor shows faster drug release, respectively 10 min, F6 gives good result for disintegration time, drug release, wetting time and friability. Further formulations were subjected to stability testing for 30 days at temperature of 40 ± 5 ºC/75 ± 5 %RH. Tablets showed no appreciable changes with respect to physical appearance, drug content, disintegration time and dissolution profiles. Results were statistically analyzed by one-way ANOVA at a p < 0.05. It was found that, the data at any point of time are significant at p < 0.05.


Author(s):  
Pratiksha S. Deore ◽  
Yashpal M. More ◽  
Avish D. Maru

The aim of present work is to formulate and develop tablets of promethazine HCL.by using various superdisintegrating agent by direct compression method. The main objective of the study is to increase rapid onset of action of promethazine HCL in the treatment of nausea and vomiting. The orodispersible tablet of promethazine hcl is were prepared by direct compression method. Using different concentration of Crospovidone, croscarmellose sodium Mannitol, lactose, maltose, mg. stearate. The tablet was evaluated by various parameters and result are found to be satisfactory.


2021 ◽  
Vol 11 (5) ◽  
pp. 115-120
Author(s):  
Kritika Rai ◽  
Vivek Jain ◽  
Sunil Kumar Jain ◽  
Pushpendra Kumar Khangar

Orally disintegrating tablets (ODT) disintegrate quickly with saliva when administered into the oral cavity and taken without water or chewed. ODT are easy to take for children and the elderly, who may experience difficultly in taking ordinary oral preparations such as tablets, capsules, and powders.  The ODT threes substantial benefits for the patient (or elder) who cannot swallow (Dysphagia), or who is not permitted water intake due to disease. The reason of the current research was to prepare taste masking oral disintegrating tablets of poorly soluble lornoxicam (LXM) by direct compression technique using Kyron T-114 (cation exchange resin) as a taste masking agent. With in various ratios the Drug-resin of 1:4 was established to present best taste masking. The superdisintegrants used in formulation are croscarmellose sodium and cross povidone. Among these croscarmellose sodium demonstrated superior drug release. The tablets were evaluated for friability, weight variation, wetting time, hardness, disintegration time and uniformity of content. Optimized formulations were evaluated for in vitro dissolution test. Amongst all the formulations F-6 was found to be most successful tablets prepared by this technique had disintegration time of 30sec and % CDR 94.78 within 30min. Hence, this advance can be utilized for taste masking of bitter pharmaceutical ingredients leading to superior patient compliance. Keywords: Oral disintegration tablets, Lornoxicam, Kyron T-114, Superdisintegrants, Direct Compression.


2020 ◽  
Vol 1 (3) ◽  
pp. 1-10
Author(s):  
S.T. Noma ◽  
◽  
B.A. Tytler ◽  
A.K. Olowosulu ◽  
Z.S. Yahaya ◽  
...  

Background: Fast dissolving or orodispersible tablets are highly desirablein groups such as children, uncooperative, nauseated, or those on reduced water intake to ease the difficulties associated with swallowing the conventional solid dosage forms. Objectives: The work aimed to evaluate the disintegrant property of sorghum starch-silicon dioxide co-processed mixture in the formulation of chlorpheniramine orodispersible tablets. Method: Different batches of orodispersible tablets of chlorpheniramine maleate (4 mg) were prepared by direct compression method using Avicel® as a bulking agent and four different types of disintegrants (sorghum starch, co-processed sorghum starch-colloidal silicon dioxide, sodium starch glycolate and croscarmellose sodium) at varying concentrations (5, 10 and 20 %). The formulated tablets were subjected to weight variation test, thickness, crushing strength, friability test, wetting time, water absorption ratio, disintegration test and in-vitro dissolution study. Results: For tablets above 250 mg, it is expected that not more than two tablets should deviate from the average weight by 5% and none should deviate by more than 10%, all the formulations yielded tablets within this specification. The disintegration time of tablets containing 10% of disintegrants was all less than 60 s except those containing sorghum starch (SS) which took a long time. Similarly, the time taken to release 50 % of the drug (t50%) for tablets containing 10% sorghum starch was 25 s, 5 s for tablets containing 10% sorghum starch-colloidal silicon dioxide excipient and 8 s for tablets containing 10% of either croscarmellose sodium or sodium starch glycolate. The differential scanning calorimetry study results suggested that the drug and the excipient are compatible. Conclusion: The results show that sorghum starch-silicon dioxide co-processed mixture can be used as an alternative to croscarmellose sodium and sodium starch glycolate in orodispersible tablet formulations.


Author(s):  
Naveen Goyal ◽  
Anil Kumar

Objective: The main objective of this research work was to design, prepare and evaluate extended release (ER) tablets of anti-asthmatic drugs (salbutamol sulphate and theophylline) by direct compression method using diverse ratios of hydroxypropyl methylcellulose (HPMC K100M) and ethyl cellulose (EC) along with some other excipients.Methods: Extended-release matrix tablets of salbutamol sulphate and theophylline were successfully fabricated by direct compression method and coded the formulations as F1 to F7 depending on the ratios of modified polymers. The core tablets composed of hydrophilic polymers of various ratios that allow the discharge of drugs at a controlled rate after coming in contact with the aqueous medium. The designed tablets were subjected to various assessment parameters i.e. friability test, hardness test, drug content consistency and In vitro dissolution tests.Results: Prepared formulations were subjected to various assessment parameters and the findings obtained were within the prescribed limit. To perform the in vitro drug dissolution tests of fabricated tablets, the calibration plots of pure drugs using various solvents i.e. 0.1N HCl, phosphate buffer (pH 6.8) and distilled water were plotted. Dosage forms F1-F7 containing ethyl cellulose and HPMC K100M in various concentration demonstrates the prolonged medications discharge for up to 8 h, among these formulations, F6 shows 95.32±0.24 % for salbutamol sulphate and 94.19±0.39 % for theophylline release at the end of 8 h. This finding reveals that a particular window of concentrations of ethylcellulose and HPMC K100M was capable of providing prolonged drugs discharge.Conclusion: The results obtained in this research work clearly showed a promising potential of extended-release tablets containing a specific ratio of HPMC K100M and ethylcellulose as a release rate controlling polymers for effective treatment of asthma and chronic obstructive pulmonary diseases (COPD).


Author(s):  
Dattatraya M. Shinkar ◽  
Pooja S. Aher ◽  
Parag D. Kothawade ◽  
Avish D. Maru

Objective: The main objective of this research work was to formulate and evaluate fast dissolving tablet of verapamil hydrochloride for the treatment of hypertension.Methods: In this study, fast dissolving tablet were prepared by wet granulation method by using croscarmellose sodium and sodium starch glycolate as superdisintegrants in the concentration of 2%, 4%, and 6%. Polyvinyl pyrollidone K30 is used as a binder. The designed tablets were subjected to various assessment parameters like friability test, hardness test, disintegration test, wetting time, in vitro drug release and drug content.Results: All the prepared formulations were subjected to various assessment parameters, and the findings obtain within the prescribed limit. The calibration curve of pure drug using various solvents like distilled water, phosphate buffer pH 6.8 was plotted. F1-F9 containing croscarmellose sodium and sodium starch glycolate in various concentration demonstrate the minimum disintegration time. Among all these formulations F8 shows disintegration time upto 19±0.06 seconds due to the high concentration of superdisintegrants. In vitro drug release was tested in phosphate buffer pH 6.8 at a time interval of 0, 1, 3,6,9,12,15 min. The F8 shows drug release 98.5±0.567%. Accelerated stability study of optimized formulation (F8) up to 2 mo showed there was no change in disintegration time and percentage drug release.Conclusion: The results obtained in the research work clearly showed a promising potential of fast dissolving tablets containing a specific ratio of crosscarmellose sodium and sodium starch glycolate as superdisintegrants for the effective treatment of hypertension. 


Author(s):  
Srikumar Billa ◽  
Saibabu Ch ◽  
Malyadri T

In the present research work, Febuxostat Immediate Release Tablet was prepared by direct compression method using varying concentrations of Lycoat, Crospovidone& Croscarmellose sodium as disintegrants. The formulations prepared were evaluated for precompression& post-compression parameters. From the drug excipient compatibility studies, we observe that there are no interactions between the pure drug (Febuxostat) and optimized formulation (Febuxostat+ excipients) which indicates there are no physical changes. Post compression parameters were found to be within the limits. Among the formulation prepared the tablet containing 12mg of CCS shows 98.13% of the drug release within 45 min & follows first-order kinetics.


Sign in / Sign up

Export Citation Format

Share Document