scholarly journals RECENT APPROACHES OF SOLID DISPERSION: A NEW CONCEPT TOWARD ORAL BIOAVAILABILITY SABITRI BINDHANI* , SNEHAMAYEE MOHAPATRA

Author(s):  
Sabitri Bindhani ◽  
Snehamayee Mohapatra

 Solid dispersion (SD) has been a major advanced technology in overcoming dissolution and bioavailability problem of poorly soluble compounds. Formulation of SD in water-soluble carrier has becoming more researched over the past four decades for solubility and relative bioavailability enhancement. By reduction of the size of the drug particle to the minimum level which will enhance drug wettability and ultimately bioavailability will be definitely improved. This review article elaborates recent advanced technology and characterization of SDs and also discusses the problems and their solution for the development of better formulations.

2020 ◽  
Vol 10 (1) ◽  
pp. 173-177 ◽  
Author(s):  
, Ikram ◽  
Kapil Kumar

Solid dispersion is a technique which is widely and successfully applied to improve the solubility, dissolution rates and consequently the bioavailability of poorly soluble drugs. Dispersion of one or more active ingredients (hydrophobic) is done with an inert carrier (hydrophilic) at solid-state prepared by fusion method, solvent, and melting solvent method. In this review article, we have focused on the methods of preparation, advantages, disadvantages and characterization of the solid dispersions. Keywords: Solid dispersion; dissolution; solubility.


Author(s):  
HUSSEIN K. ALKUFI ◽  
ASMAA M. RASHID

Objective: The aims of the study to enhance solubility and dissolution of famotidine using natural polymer. Solubility study of a drug is one of the contributing factors of its oral bioavailability. The formulation of poorly soluble drugs for oral delivery presents a challenge to the formulation technologists. Methods: The present study has shown that it is possible to raise the solubility for poorly soluble drugs like famotidine, by preparing solid dispersion using natural water-soluble polymer (xyloglucan and hyaluronic acid) as solubilizer through solvent evaporation method. Physical mixture and solid dispersion of famotidine with xyloglucan (XG) or hyaluronic acid in a ratio of 1:1, 1:2, 1:3 were prepared. Solubility study, drug content, dissolution profile and compatibility study were performed for famotidine in solid dispersions XS1, XS2, XS3, HS4, HS5, HS6 as well as in physical mixtures at a ratio 1:1 for both polymer (XG and hyaluronic acid). Results: It was observed that solid dispersions of each drugs showed an increase in dissolution rate in comparison with its pure drug in the ratio of 1:1 (Drug: carrier). It can be concluded that with the care and proper use of xyloglucan, the solubility of drugs poorly soluble can be improved. The prepared solid dispersion showed improvement of drug solubility in all prepared formulas. The best result was obtained with formula XS1 (famotidine: xyloglucan at ratio 1:1) that showed 26 fold increase in solubility compared to the solubility of pure drug. Conclusion: The natural solid dispersion, increased wettability and reduced crystallinity of the drug which leads to improving solubility and dissolution.


2016 ◽  
Vol 52 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Ehsan Adeli

ABSTRACT Azithromycin is a water-insoluble drug, with a very low bioavailability. In order to increase the solubility and dissolution rate, and consequently increase the bioavailability of poorly-soluble drugs (such as azithromycin), various techniques can be applied. One of such techniques is "solid dispersion". This technique is frequently used to improve the dissolution rate of poorly water-soluble compounds. Owing to its low solubility and dissolution rate, azithromycin does not have a suitable bioavailability. Therefore, the main purpose of this investigation was to increase the solubility and dissolution rate of azithromycin by preparing its solid dispersion, using different Polyethylene glycols (PEG). Preparations of solid dispersions and physical mixtures of azithromycin were made using PEG 4000, 6000, 8000, 12000 and 20000 in various ratios, based on the solvent evaporation method. From the studied drug release profile, it was discovered that the dissolution rate of the physical mixture, as the well as the solid dispersions, were higher than those of the drug alone. There was no chemical incompatibility between the drug and polymer from the observed Infrared (IR) spectra. Drug-polymer interactions were also investigated using Differential Scanning Calorimetry (DSC), Powder X-Ray Diffraction (PXRD) and Scanning Election Microscopy (SEM). In conclusion, the dissolution rate and solubility of azithromycin were found to improve significantly, using hydrophilic carriers, especially PEG 6000.


2019 ◽  
Vol 9 (2) ◽  
pp. 583-590 ◽  
Author(s):  
Sandip R. Pawar ◽  
Shashikant D. Barhate

The solubility of a solute is the maximum quantity of solute that can dissolve in a certain quantity of solvent or quantity of solution at a specified temperature. Solubility is one of the important parameter to achieve desired concentration of drug in systemic circulation for pharmacological response to be shown. Solubility is essential for the therapeutic effectiveness of the drug, independent of the route of administration. Low aqueous solubility is the major problem encountered with formulation development of new chemical entities as well as for the generic development. Poorly soluble drugs are often a challenging task for formulators in the industry Conventional  approaches  for  enhancement  of  solubility  have  limited  applicability,  especially when  the  drugs  are  poorly  soluble  simultaneously  in  aqueous  and  in  non-aqueous  media. Drug with poor water solubility cause slow dissolution rates, generally show erratic and incomplete absorption leading to low bioavailability when administered orally. Solubilization may be affected by cosolvent water  interaction, micellar solubilization, reduction in  particle  size,  inclusion  complexes,  solid  dispersion,  and  change  in  polymorph.  Some  new technologies  are  also  available  to  increase  the  solubility  like  micro emulsion,  self-emulsifying drug  delivery  system  and  supercritical  fluid  technology. This present review details about the different approaches used for the enhancement of the solubility of poorly water-soluble drugs include particle size reduction, nanonization, pH adjustment, solid dispersion, complexation, co‐solvency, hydrotropy etc. The purpose of this article is to describe the techniques of solubilization for the attainment of effective absorption and improved bioavailability. Keywords: Solubility, Solubility Enhancement, bioavailability, solid dispersion, Solid Dispersion, Solubilization.


2019 ◽  
Vol 7 (03) ◽  
pp. 05-11
Author(s):  
Diksha Thakur ◽  
Rambabu Sharma

The oral route is the most preferred route for the administration of various drugs because it is the most convenient and safest route for drug delivery. The researcher develops a recently fast dissolving tablet (FDT). This improved patient compliance and convenience. FDTs are defining as the solid dosage form, which disintegrates in saliva without the need for water. Solid dispersions attract considerable interest by increasing the dissolution rate and also enhance the bioavailability of poor water-soluble drugs. Pre-gastric absorption avoids first-pass hepatic metabolism, which increases the bioavailability of the drug. One part of the review article focus on solid dispersion, there advantages, disadvantages, and method of preparation. Later part of the review article focus on the evaluation of fast dissolving tablet.


2020 ◽  
Vol 14 (1) ◽  
pp. 63-74 ◽  
Author(s):  
Ritu Kaushik ◽  
Vikas Budhwar ◽  
Deepak Kaushik

The oral bioavailability enhancement of poorly water-soluble medicaments is still one of the most complicated aspects of the formulation development. Various approaches are currently available for solubility and rate of dissolution enhancement such as salt formation, solubilization and reduction of particle size, each with its own limitations and advantages. Solid dispersion is one of the most suitable approaches for the formulation development of poorly water-soluble drugs. The popularity of solid dispersion is evident from the increasing number of patent applications and patents granted in this field during recent years. This article reviews the various approaches for the preparation of solid dispersion such as a solvent melting, hot-melt extrusion method, solvent evaporation method, cryogenic processing approaches etc. from the perspective of patents filed or granted for these techniques. Some of the aspects taken into account before the preparation of solid dispersions are carrier selection and physicchemical testing along with an insight into the molecular arrangement of medicaments in solid dispersion. The manuscript further highlights various commercial patented technology platforms such as Solumertm, Hovione and Kinetisol which are based on the concept of solid dispersions.


2009 ◽  
Vol 59 (4) ◽  
pp. 453-461 ◽  
Author(s):  
Vikrant Vyas ◽  
Pankajkumar Sancheti ◽  
Poonam Karekar ◽  
Manali Shah ◽  
Yogesh Pore

Physicochemical characterization of solid dispersion systems of tadalafil with poloxamer 407 Dissolution behaviour of a poorly water-soluble drug, tadalafil, from its solid dispersion systems with poloxamer 407 has been investigated. Solid dispersion systems of tadalafil were prepared with poloxamer 407 in 1:0.5, 1:1.5 and 1:2.5 ratios using the melting method. Characterization of binary systems with FTIR and XRPD studies demonstrated the presence of strong hydrogen bonding interactions, a significant decrease in crystallinity and the possibility of existence of amorphous entities of the drug. In the binary systems tested, 1:0.5 proportion of tadalafil/poloxamer 407 showed rapid dissolution of tadalafil (DE30 70.9 ± 3.6 %). In contrast, higher proportions of poloxamer 407 (1:1.5 and 1:2.5) offered no advantage towards dissolution enhancement of the drug, indicating altered rheological characteristics of the polymer at its higher concentration, which might have retarded the release rate of tadalafil.


2004 ◽  
Vol 269 (1) ◽  
pp. 251-258 ◽  
Author(s):  
Hemant N Joshi ◽  
Ravindra W Tejwani ◽  
Martha Davidovich ◽  
Vaishali P Sahasrabudhe ◽  
Mohammed Jemal ◽  
...  

Pharmaceutics ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 465 ◽  
Author(s):  
Griffin Pauli ◽  
Wei-Lun Tang ◽  
Shyh-Dar Li

A large proportion of pharmaceutical compounds exhibit poor water solubility, impacting their delivery. These compounds can be passively encapsulated in the lipid bilayer of liposomes to improve their water solubility, but the loading capacity and stability are poor, leading to burst drug leakage. The solvent-assisted active loading technology (SALT) was developed to promote active loading of poorly soluble drugs in the liposomal core to improve the encapsulation efficiency and formulation stability. By adding a small volume (~5 vol%) of a water miscible solvent to the liposomal loading mixture, we achieved complete, rapid loading of a range of poorly soluble compounds and attained a high drug-to-lipid ratio with stable drug retention. This led to improvements in the circulation half-life, tolerability, and efficacy profiles. In this mini-review, we summarize our results from three studies demonstrating that SALT is a robust and versatile platform to improve active loading of poorly water-soluble compounds. We have validated SALT as a tool for improving drug solubility, liposomal loading efficiency and retention, stability, palatability, and pharmacokinetics (PK), while retaining the ability of the compounds to exert pharmacological effects.


2010 ◽  
Vol 11 (2) ◽  
pp. 518-527 ◽  
Author(s):  
Shilpi Sinha ◽  
Mushir Ali ◽  
Sanjula Baboota ◽  
Alka Ahuja ◽  
Anil Kumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document