scholarly journals Solid dispersion a novel approach for enhancement of solubility and dissolution rate: a review

2019 ◽  
Vol 7 (03) ◽  
pp. 05-11
Author(s):  
Diksha Thakur ◽  
Rambabu Sharma

The oral route is the most preferred route for the administration of various drugs because it is the most convenient and safest route for drug delivery. The researcher develops a recently fast dissolving tablet (FDT). This improved patient compliance and convenience. FDTs are defining as the solid dosage form, which disintegrates in saliva without the need for water. Solid dispersions attract considerable interest by increasing the dissolution rate and also enhance the bioavailability of poor water-soluble drugs. Pre-gastric absorption avoids first-pass hepatic metabolism, which increases the bioavailability of the drug. One part of the review article focus on solid dispersion, there advantages, disadvantages, and method of preparation. Later part of the review article focus on the evaluation of fast dissolving tablet.

Author(s):  
Sanjoy Kumar Das

Improving oral bioavailability of drugs those given as solid dosage forms remains a challenge for the formulation scientists due to solubility problems. The dissolution rate could be the rate-limiting process in the absorption of a drug from a solid dosage form of relatively insoluble drugs. Therefore increase in dissolution of poorly soluble drugs by solid dispersion technique presents a challenge to the formulation scientists. Solid dispersion techniques have attracted considerable interest of improving the dissolution rate of highly lipophilic drugs thereby improving their bioavailability by reducing drug particle size, improving wettability and forming amorphous particles. The term solid dispersion refers to a group of solid products consisting of at least two different components, generally a hydrophilic inert carrier or matrix and a hydrophobic drug. This article reviews historical background of solid dispersion technology, limitations, classification, and various preparation techniques with its advantages and disadvantages. This review also discusses the recent advances in the field of solid dispersion technology. Based on the existing results and authors’ reflection, this review give rise to reasoning and suggested choices of carrier or matrix and solid dispersion procedure.


Author(s):  
Sadhna Khatry ◽  
Neha Sood ◽  
Sandeep Arora

Preparation of an effective formulation of poorly water-soluble drugs is a key challenge in pharmaceutical technology. Dissolution rate and solubility are the rate- limiting steps for increasing the bioavailability of poorly water‐soluble drugs. Solid dispersion is an efficient technique for improving dissolution rate and subsequently, the bioavailability of poorly water‐soluble drugs. Surface sSolid dDispersion is a novel technique of solid dispersion for dispersing one or more active ingredients on a water insoluble carrier of high surface area in order to achieve increased dissolution rates and bioavailability of insoluble drugs. The Vvarious polymers used in this technique are Avicel, Crosspovidone, sSodium starch glycolate, pPregelatinized starch, Cab-o-sil, Ac-di-sol, KyronT-314, Primojel and pPotato sStarch. This article reviews the various methods of preparation and characterization of surface solid dispersion and compiles some of the drugs formulated as surface solid dispersions. Some of the practical aspects to be considered for preparing surface solid dispersion are selection of a suitable carrier and method of preparation of surface solid dispersion.


INDIAN DRUGS ◽  
2016 ◽  
Vol 53 (01) ◽  
pp. 54-59
Author(s):  
S. S Shelake ◽  
◽  
R. G Gaikwad ◽  
S Patil ◽  
F. I. Mevekari ◽  
...  

Crystalline state compounds are typically dissolution rate limited and dissolution rate is directly proportional to the solubility for BCS class II or class IV compounds. Solid dispersions are one of the most promising strategies to improve the oral bioavailability poorly water soluble drugs. The purpose of this study was to increase solubility of carvedilol by solid dispersion (SDs) technique with Poloxamer (PXM) 407 in aqueous media. The carvedilol- PXM 407 solid dispersion was prepared by solvent evaporation, kneading and melting method. It was characterized by differential scanning calorimetry (DSC), X-ray powder diffraction (XRD), Fourier transformation infra-red spectroscopy (FT-IR), scanning electron microscopy (SEM) and in vitro dissolution studies. The prepared solid dispersion were found to have higher dissolution rates as compared to intact carvedilol. During formulation of solid dispersion crystalline to amorphous transition has been observed.


Author(s):  
PURNACHANDRA REDDY GUNTAKA ◽  
SRINIVAS LANKALAPALLI

Enhancement of the bioavailability of poorly water-soluble drugs is a challenging task in drug development. Currently 40% of new chemical entities are discovered as poorly water-soluble drugs. Solid dispersion is one of the best technology for improving solubility, dissolution rate, and bioavailability. Solid dispersion techniques are more useful for enhancing drug solubility for a combination of drug and inert carrier to improve wettability, reduced particle size, and converting amorphous particles. This article reviews various advantages, methods of solid dispersions, carriers used in solid dispersion, characterization, and marketed products.


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (06) ◽  
pp. 13-19
Author(s):  
R. O Sonawane ◽  
◽  
S. Nayak ◽  
M. D. Chaudhari ◽  
V. V. Pande

The poorly water soluble drugs tend to have low bioavailability and this can be improved by several methods. Solid dispersion is a promising formulation approach to improve solubility and dissolution and ultimately oral bioavailability of these drugs. The aim of this study was to prepare and characterize solid dispersion of anti-diabetic glimepiride, a BCS class II drug, with the hydrophilic carrier PVP K30 by solvent evaporation and microwave induced fusion methods. Scanning electron microscopy (SEM), X–ray powder diffractometry (XRD) and differential scanning calorimetric (DSC) were used to evaluate the physical state of the drug. The solid dispersions were also evaluated for drug content, solubility and dissolution studies. Solid dispersions prepared by solvent evaporation method were showed maximum enhancement of solubility and dissolution in comparison to that prepared by other method.


2012 ◽  
Vol 1 (12) ◽  
pp. 423-430 ◽  
Author(s):  
Md. Sariful Islam Howlader ◽  
Jayanta Kishor Chakrabarty ◽  
Khandokar Sadique Faisal ◽  
Uttom Kumar ◽  
Md. Raihan Sarkar ◽  
...  

The aim of the present study was to improve the solubility and dissolution rate of a poorly water-soluble drug by a solid dispersion technique, in order to investigate the effect of these polymers on release mechanism from solid dispersions. Diazepam was used as a model drug to evaluate its release characteristics from different matrices. Solid dispersions were prepared by using polyethylene glycol 6000 (PEG-6000), HPMC, HPC and Poloxamer in different drug-to-carrier ratios (1:2, 1:4, 1:6, 1:8, 1:10). The solid dispersions were prepared by solvent method. The pure drug and solid dispersions were characterized by in vitro dissolution study. Distilled water was used as dissolution media, 1000 ml of distilled water was used as dissolution medium in each dissolution basket at a temperature of 37°C and a paddle speed of 100 rpm. The very slow dissolution rate was observed for pure Diazepam and the dispersion of the drug in the polymers considerably enhanced the dissolution rate. This can be attributed to improved wettability and dispersibility, as well as decrease of the crystalline and increase of the amorphous fraction of the drug. SEM (Scanning Electron microscope) studies shows that the solid dispersion having a uniform dispersion. Solid dispersions prepared with PEG-6000, Poloxamer showed the highest improvement in wettability and dissolution rate of Diazepam. Solid dispersion containing polymer prepared with solvent method showed significant improvement in the release profile as compared to pure drug, Diazepam.DOI: http://dx.doi.org/10.3329/icpj.v1i12.12453 International Current Pharmaceutical Journal 2012, 1(12): 423-430


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1679
Author(s):  
Thao T.D. Tran ◽  
Phuong H.L. Tran

In recent decades, solid dispersions have been demonstrated as an effective approach for improving the bioavailability of poorly water-soluble drugs, as have solid dispersion techniques that include the application of nanotechnology. Many studies have reported on the ability to change drug crystallinity and molecular interactions to enhance the dissolution rate of solid dispersions using hydrophilic carriers. However, numerous studies have indicated that insoluble carriers are also promising excipients in solid dispersions. In this report, an overview of solid dispersion strategies involving insoluble carriers has been provided. In addition to the role of solubility and dissolution enhancement, the perspectives of the use of these polymers in controlled release solid dispersions have been classified and discussed. Moreover, the compatibility between methods and carriers and between drug and carrier is mentioned. In general, this report on solid dispersions using insoluble carriers could provide a specific approach and/or a selection of these polymers for further formulation development and clinical applications.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 407
Author(s):  
Sooho Yeo ◽  
Jieun An ◽  
Changhee Park ◽  
Dohyun Kim ◽  
Jaehwi Lee

This study aimed to improve the solubility and dissolution of aprepitant, a drug with poor aqueous solubility, using a phosphatidylcholine (PC)-based solid dispersion system. When fabricating the PC-based solid dispersion, we employed mesoporous microparticles, as an adsorbent, and disintegrants to improve the sticky nature of PC and dissolution of aprepitant, respectively. The solid dispersions were prepared by a solvent evaporation technique and characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry, and X-ray powder diffraction. The FTIR results showed that aprepitant interacted with the PC carrier by both hydrogen bonds and van der Waals forces that can also be observed in the interaction between aprepitant and polymer carriers. The solid dispersions fabricated with only PC were not sufficient to convert the crystallinity of aprepitant to an amorphous state, whereas the formulations that included adsorbent and disintegrant successfully changed that of aprepitant to an amorphous state. Both the solubility and dissolution of aprepitant were considerably enhanced in the PC-based solid dispersions containing adsorbent and disintegrant compared with those of pure aprepitant and polymer-based solid dispersions. Therefore, these results suggest that our PC-based solid dispersion system is a promising alternative to conventional formulations for poorly water-soluble drugs, such as aprepitant.


2016 ◽  
Vol 52 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Ehsan Adeli

ABSTRACT Azithromycin is a water-insoluble drug, with a very low bioavailability. In order to increase the solubility and dissolution rate, and consequently increase the bioavailability of poorly-soluble drugs (such as azithromycin), various techniques can be applied. One of such techniques is "solid dispersion". This technique is frequently used to improve the dissolution rate of poorly water-soluble compounds. Owing to its low solubility and dissolution rate, azithromycin does not have a suitable bioavailability. Therefore, the main purpose of this investigation was to increase the solubility and dissolution rate of azithromycin by preparing its solid dispersion, using different Polyethylene glycols (PEG). Preparations of solid dispersions and physical mixtures of azithromycin were made using PEG 4000, 6000, 8000, 12000 and 20000 in various ratios, based on the solvent evaporation method. From the studied drug release profile, it was discovered that the dissolution rate of the physical mixture, as the well as the solid dispersions, were higher than those of the drug alone. There was no chemical incompatibility between the drug and polymer from the observed Infrared (IR) spectra. Drug-polymer interactions were also investigated using Differential Scanning Calorimetry (DSC), Powder X-Ray Diffraction (PXRD) and Scanning Election Microscopy (SEM). In conclusion, the dissolution rate and solubility of azithromycin were found to improve significantly, using hydrophilic carriers, especially PEG 6000.


2012 ◽  
Vol 4 (2) ◽  
pp. 42-47
Author(s):  
Irwin Dewan ◽  
SM Ashraful Islam ◽  
Mohammad Shahriar

The main objective of the current study was to formulate poorly water soluble drug Spirinolactone by using solid dispersion technique in order to achieve a better dissolution rate which would further help in enhancing oral bioavailability. Solid dispersions were prepared using two methods; solvent method and fusion method. Solid dispersion was prepared by using polymers, such as Hydroxy propylymethyl cellulose (HPMC 6cp), Hydroxy propyl cellulose (HPC), Sodium carboxymethylcellulose (Na-CMC), Povidone K12, Povidone K30, Poloxamer 407. Solid dispersions containing Spironolactone with HPC (96.81%), HPMC 6cp (93.05%), Poloxamer 407 (90.84%) and Na-CMC (89.93%) provided higher release rate than the release rate of solid dispersion containing only Spironolactone (35.27%), and Spironolactone with Povidone K12 (76.17%), Povidone K30 (67.92%). So the present study revealed that the solid dispersion may be an ideal means of drug delivery system for poorly water soluble drugs. Further study in this field was required to establish these drug delivery systems so that in future it can be used effectively in commercial basis.DOI: http://dx.doi.org/10.3329/sjps.v4i2.7776S. J. Pharm. Sci. 4(2) 2011: 42-47


Sign in / Sign up

Export Citation Format

Share Document