scholarly journals SYNTHESIS, IN SILICO CHARACTERIZATION AND EX VIVO EVALUATION OF THE NOVEL ORGANIC NITRATE NDIBP AS A POTENTIAL VASORELAXANT AGENT

Author(s):  
AIRLLA LAANA DE MEDEIROS CAVALCANTI ◽  
PATRÍCIA KEYTTH LINS ROCHA ◽  
ISADORA SILVA LUNA ◽  
MARIA CLÁUDIA RODRIGUES BRANDÃO ◽  
EMMELY OLIVEIRA DA TRINDADE ◽  
...  

Objective: This study aimed to describe the synthesis and biological/pharmacokinetic potential of the 1,3-diisobutoxypropan-2-yl nitrate (NDIBP) using in silico and ex vivo approaches. Methods: The compound was characterized by Fourier-transform infrared spectroscopy and 1H and 13C- nuclear magnetic resonance spectra. NDIBP biological activity spectrum was obtained by Prediction of Activity Spectra for Substances (PASS). The pharmacological effect was validated in ex vivo studies using mesenteric artery. Drug-like properties and Absorption Distribution Metabolism Excretion and Toxicity (ADMET) studies were carried out by pkCSM (Predicting Small-Molecule Pharmacokinetic Properties Using Graph-Based Signatures) software. Results: PASS prediction indicated NDIBP as nitric oxide (NO) donor with vasodilator effect. Ex vivo studies validated PASS analysis and showed the NDIBP vasorelaxant activity in mesenteric arteries. Physicochemical parameters and ADMET prediction suggested that NDIBP is a drug-like molecule with a good theoretical oral bioavailability, good absorption in the gastrointestinal tract, and a low distribution in the tissues. Conclusion: All the data indicated that NDIBP possesses biological activities and drug-like properties to be considered as a vasorelaxant agent and a good candidate for further investigation in the treatment of arterial hypertension and drug development studies.

2023 ◽  
Vol 83 ◽  
Author(s):  
A. P. Sousa ◽  
D. A. Fernandes ◽  
M. D. L. Ferreira ◽  
L. V. Cordeiro ◽  
M. F. V. Souza ◽  
...  

Abstract Tiliroside is a glycosidic flavonoid present in many plants species including Helicteres velutina K. Schum (Malvaceae sensu lato), commonly known in Brazil as “pitó”. This molecule has been shown to have many biological activities, however no study has been carried out to investigate the toxicity of this substance. The present work aimed to evaluate the possible cellular toxicity in silico, in vitro and ex-vivo of the kaempferol-3-O-β-D-(6”-E-p-coumaroyl) glucopyranoside (tiliroside), through chemical structure analysis, toxicity assessment and predictive bioactive properties, using human samples for in vitro and ex-vivo tests. The in silico analysis suggests that tiliroside exhibited great absorption index when penetrating biological membranes. In addition, it also displayed considerable potential for cellular protection against free radicals, and anticarcinogenic, antioxidant, antineoplastic, anti-inflammatory, anti-hemorrhagic and antithrombotic activities. The assessment of the hemolytic and genotoxic effects of tiliroside showed low hemolysis rates in red blood cells and absence of cellular toxicity in the oral mucosa cells. The data obtained indicate that this molecule could be a promising therapeutic approach as a possible new drug with biotechnological potential.


INDIAN DRUGS ◽  
2016 ◽  
Vol 53 (06) ◽  
pp. 74-79
Author(s):  
S Sharma ◽  
◽  
K Daniel ◽  
V. Daniel ◽  
L Sharma

Alzheimer’s disease is an irreversible, progressive brain disease that slowly destroys cognition function. It is neurodegenerative disease & most common kind of dementia. The main purpose of this work is to perform preliminary docking screening & estimate toxic properties of some anti-Alzheimer's drugs through computational software. To assess toxic properties of some anti-Alzheimer’s drugs, through Lipinski rule of five. Drug-likeness and toxic properties of selective drugs were determined by employing Osiris server. To calculate the biological activity spectrum through prediction of activity spectra for a drug which provide intrinsic property that correspond to different pharmacological effects, physiological and biochemical mechanisms of action. The OSIRIS toxicity predictions resulted for toxicity, cLogP value, drug likeness and drug-score of each molecular imprint. These findings are relevant for the exploration of drug action of any compound of Anti- Alzheimer’s drug using both animal models and in silico strategies.


2020 ◽  
Vol 9 (4) ◽  
pp. e122942936
Author(s):  
Márcio Tavares Costa ◽  
Aline da Silva Goulart ◽  
Jefferson de Jesus Soares ◽  
Andréia Caroline Fernandes Salgueiro ◽  
Hemerson Silva Da Rosa ◽  
...  

Handroanthus chrysotrichus is a tree of the Bignoniaceae family known as golden trumpet that is distributed throughout Northeast, Southeast and South Brazil. Its flowers, stem and bark are used for medicinal purposes in the treatment of cardiovascular and immune system diseases. This study aims to evaluate the phytochemical profile, biological activity spectrum, antioxidant capacity and toxicological potential of H. chrysotrichus stem bark extract. Hydroethanolic extract was obtained by percolation and lyophilized. Compounds present in the extract were analyzed by colorimetric methods and by GC-MS. Evaluation of the biological activity spectrum was performed in silico. Antioxidant power was determined by investigation of total antioxidant capacity, iron chelating capacity, DPPH• and ABTS•+ assays, and deoxyribose degradation test. The ability to inhibit Fe+ induced lipoperoxidation was evaluated in mouse brains and livers. Nauplii of Artemia salina were used to evaluate the median lethal dose. Toxicity was assessed by computer simulation, and in vitro in human lymphocytes. As a result, colorimetric methods suggest high levels of polyphenols and GC-MS data indicated the occurrence of α-curcumene, β-bisabolene, 4- (4-methylphenyl) pentanal, pentanoic acid and isoamyl acetate. Computer simulations have pointed biological activities that are in accordance with their traditional use. The H. chrysotrichus stem bark extract exhibited antioxidant activity in several assays and was effective in protecting mouse brains and livers from Fe+ induced lipoperoxidation. H. chrysotrichus stem bark extract showed medium toxicity in A. salina with potential presence of bioactive compounds. In general, the compounds showed low probability of toxicity in silico predictions. There was no cytotoxicity and genotoxicity in human lymphocyte evaluation. The results indicate that H. chrysotrichus stem bark extract has compounds with biological activity spectrum and low toxicological potential. It also shows antioxidant capacity and protective action against lipid peroxidation. The data presented support the medicinal use of golden trumpet and point to it as a promising extract for in vivo evaluations.


2018 ◽  
Author(s):  
E. Iype ◽  
Huaichen Zhang ◽  
A.D. Pathak ◽  
Shuiquan Lan ◽  
C. Ferchaud ◽  
...  

Author(s):  
Markus Boel ◽  
Oscar J. Abilez ◽  
Ahmed N Assar ◽  
Christopher K. Zarins ◽  
Ellen Kuhl

2019 ◽  
Vol 19 (8) ◽  
pp. 633-644 ◽  
Author(s):  
Komal Kalani ◽  
Sarfaraz Alam ◽  
Vinita Chaturvedi ◽  
Shyam Singh ◽  
Feroz Khan ◽  
...  

Introduction: As a part of our drug discovery program for anti-tubercular agents, dihydroartemisinin (DHA-1) was screened against Mtb H37Rv, which showed moderate anti-tubercular activity (>25.0 µg/mL). These results prompted us to carry out the chemical transformation of DHA-1 into various derivatives and study their antitubercular potential. Materials and Methods: DHA-1 was semi-synthetically converted into four new acyl derivatives (DHA-1A – DHA-1D) and in-vitro evaluated for their anti-tubercular potential against Mycobacterium tuberculosis H37Rv virulent strain. The derivatives, DHA-1C (12-O-(4-nitro) benzoyl; MIC 12.5 µg/mL) and DHA-1D (12-O-chloro acetyl; MIC 3.12µg/mL) showed significant activity against the pathogen. Results: In silico studies of the most active derivative (DHA-1D) showed interaction with ARG448 inhibiting the mycobacterium enzymes. Additionally, it showed no cytotoxicity towards the Vero C1008 cells and Mouse bone marrow derived macrophages. Conclusion: DHA-1D killed 62% intracellular M. tuberculosis in Mouse bone marrow macrophage infection model. To the best of our knowledge, this is the first-ever report on the antitubercular potential of dihydroartemisinin and its derivatives. Since dihydroartemisinin is widely used as an antimalarial drug; these results may be of great help in anti-tubercular drug development from a very common, inexpensive, and non-toxic natural product.


2018 ◽  
Vol 15 (2) ◽  
pp. 127-135 ◽  
Author(s):  
Parvesh Singh ◽  
Nomandla Ngcoya ◽  
Ramgopal Mopuri ◽  
Nagaraju Kerru ◽  
Neha Manhas ◽  
...  

Background: Diabetes Mellitus (DM) is a complex metabolic disease illustrated by abnormally high levels of plasma glucose or hyperglycaemia. Accordingly, several α-glucosidase inhibitors have been developed for the treatment of diabetes and other degenerative disorders. While, a coumarin ring has the privilege to represent numerous natural and synthetic compounds with a wide spectrum of biological activities e.g. anti-cancer, anti-HIV, anti-viral, anti-malarial, anti-microbial, anti-convulsant, anti-hypertensive properties. Besides this, coumarins have also shown potential to inhibit α-glucosidase leading to a generation of new promising antidiabetic agents. However, the testing of O-substituted coumarins for α-glucosidase inhibition has evaded the attention of medicinal chemists. Methods: For O-alkylation/acetylation reactions, the hydroxyl coumarins (A-B) initially activated by K2CO3 in dry DMF were reacted with variedly substituted haloalkanes at room temperature under nitrogen. The synthesized compounds were tested for their α-glucosidase (from Saccharomyces cerevisiae) inhibitory activity and anti-oxidant activity using DPPH radical scavenging activity. In silico docking simulations were conducted using CDocker module in DS (Accelrys) to explore the binding modes of the representative compounds in the catalytic site of α-glucosidase. Results: All the coumarin analogues (A1, B1, A2-A10, B2-B8) including their precursors (A-B) were evaluated for their in vitro α-glucosidase inhibition using acarbose as a standard inhibitor. All the mono O-alkylated coumarins (except A1) showed significant (p <0.05) α-glucosidase inhibition relative to the hydroxyl coumarin (A) with IC50 values ranging between 11.084±0.117 to 145.24± 29.22 µg/mL. Compound 7-(benzyloxy)-4, 5-dimethyl-2H-chromen-2-one (A9) bearing a benzyl group (Ph-CH2-) at position 7 showed a remarkable (p <0.05) increase in the activity (IC50 = 11.084±0.117 µg/mL), almost four-fold more than acarbose (IC50 = 40.578±5.999 µg/mL). The introduction of –NO2 group dramatically improved the anti-oxidant activity of coumarin, while the O-alkylation/acetylation decreased the activity. Conclusion: The present study describes the synthesis of functionalized coumarins and their evaluation for α-glucosidase inhibition and antioxidant activity under in vitro conditions. Based on IC50 data, the mono O-alkylated coumarins were observed to be stronger inhibitors of α-glucosidase with respect to their bis O-alkylated analogues. Coumarin (A9) bearing O-benzyloxy group displayed the strongest α-glucosidase inhibition, even higher than the standard inhibitor acarbose. The coumarin (A10) bearing –NO2 group showed the highest anti-oxidant activity amongst the synthesized compounds, almost comparable to the ascorbic acid. Finally, in silico docking simulations revealed the role of hydrogen bonding and hydrophobic forces in locking the compounds in catalytic site of α-glucosidase.


2020 ◽  
Vol 16 ◽  
Author(s):  
Mahboob Ali ◽  
Momin Khan ◽  
Khair Zaman ◽  
Abdul Wadood ◽  
Maryam Iqbal ◽  
...  

: Background: The inhibition of α-amylase enzyme is one of the best therapeutic approach for the management of type II diabetes mellitus. Chalcone possesses a wide range of biological activities. Objective: In the current study chalcone derivatives (1-17) were synthesized and evaluated their inhibitory potential against α-amylase enzyme. Method: For that purpose, a library of substituted (E)-1-(naphthalene-2-yl)-3-phenylprop-2-en-1-ones was synthesized by ClaisenSchmidt condensation reaction of 2-acetonaphthanone and substituted aryl benzaldehyde in the presence of base and characterized via different spectroscopic techniques such as EI-MS, HREI-MS, 1H-, and 13C-NMR. Results: Sixteen synthetic chalcones were evaluated for in vitro porcine pancreatic α-amylase inhibition. All the chalcones demonstrated good inhibitory activities in the range of IC50 = 1.25 ± 1.05 to 2.40 ± 0.09 μM as compared to the standard commercial drug acarbose (IC50 = 1.34 ± 0.3 μM). Conclusion: Chalcone derivatives (1-17) were synthesized, characterized, and evaluated for their α-amylase inhibition. SAR revealed that electron donating groups in the phenyl ring have more influence on enzyme inhibition. However, to insight the participation of different substituents in the chalcones on the binding interactions with the α-amylase enzyme, in silico (computer simulation) molecular modeling analyses were carried out.


Sign in / Sign up

Export Citation Format

Share Document