scholarly journals EFFECT OF 2% CHLORHEXIDINE GLUCONATE ON THE DEGRADATION OF RESINCOMPOSITE–DENTIN BOND STRENGTH WHEN USING SELF-ETCH ADHESIVE SYSTEMS

2018 ◽  
Vol 9 ◽  
pp. 45 ◽  
Author(s):  
Dewi Puspitasari ◽  
Ellyza Herda ◽  
Andi Soufyan

Objective: The purpose of this study was to analyze the effect of 2% chlorhexidine gluconate (CHX) on the degradation of composite resin–dentin bond strength when using self-etch adhesive systems.Methods: CHX (2%) was applied before application of two-step self-etch (TSC) and one-step self-etch (OSC) adhesive. Resin composite was applied incrementally. Specimens from the degradation treatment group were immersed in 10% NaOCl for 1 h. Shear bond strength was tested with a universal testing machine and analyzed using one-way ANOVA and Dunnett’s T3 post-hoc test. The composite resin–dentin bonds were observed using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS).Results: In the treatment group without 10% NaOCl, shear bond strength values were higher in the 2% CHX-treated group (TSC 11.67±1.76 MPa and OSC 10.19±1.44 MPa) than in the untreated group (TSC 10.93±1.31MPa and OSC 9.97±1.41 MPa), although this difference was not statistically significant. In samples exposed to10% NaOCl, shear bond strength values were higher in the 2% CHX-treated group (TSC 11.14±1.22 MPa and OSC 9.95±1.21 MPa) than in the untreated group (TSC 10.08±0.45 MPa and OSC 8.62±0.85 MPa), although this difference was not statistically significant. The SEM of samples from the 2% CHX-treated group showed less degradation than samples from the untreated group did.Conclusion: Application of 2% CHX may decrease the degradation of the resin composite-dentin bond.

2014 ◽  
Vol 13 (1) ◽  
pp. 7
Author(s):  
Dewi Puspitasari ◽  
Andi Soufyan ◽  
Ellyza Herda

Composite resin is a widely used aesthetic restoration. The restoration can fail due to secondary caries. Chlorhexidinegluconate 2% is used as a cavity disinfectant to eliminate microorganisms on the prepared cavity and to prevent thesecondary caries. The purpose of this study was to analyze the effect of chlorhexidine gluconate 2% to the bondstrength of composite resin with self etch system adhesive on dentine. Sixteen specimens of buccal dentine of premolarscrown are divided into 2 different groups. Group I: Clearfil SE Bond self-etch primer was applied for 20 seconds,Clearfil SE Bond bonding was applied for 5 seconds and polymerized for 10 seconds. Composite resin was constructedincrementally and polymerized for 20 seconds. Group II: prior to self etch primer application as in group I,chlorhexidine gluconate 2% was applied for 15 seconds. Shear bond strength was tested using Testing machine andanalyzed with unpaired T test. The highest shear bond strength was obtained by applying chlorhexidine gluconate 2%.The study concludes that chlorhexidine gluconate 2% application to dentine did not affect significantly to the bondstrength composite resin using self etch adhesive systems.


2020 ◽  
Vol 8 (10) ◽  
pp. 454-459
Author(s):  
Bhalla V. ◽  
◽  
K. Goud M. ◽  
Chockattu S. ◽  
Khera A ◽  
...  

Background:Dentin bonding is an ever-evolving field in adhesive dentistry. With the introduction of newer systems into the market, there is a crucial need to test their efficiency in terms of bond strength. Dual-cured adhesives in theory may provide for a better degree of conversion as compared to conventional light-cured adhesives .Thus, the aim of this study was to compare the shear bond strength of three different self-etch adhesives namely ClearfilSE bond (Kuraray), Tetric N Bond Universal (IvoclarVivadent) and Futura Bond DC (Voco) to dentin. Materials & Methods: Ninety extracted non-carious, intact human mandibular molar teeth were selected for this study. Each tooth was decoronated using a double-sided diamond disc with water coolant to a depth of 2mm from the cusp tip .The cut dentin surface was then abraded against 600-grit wet silicon carbide papers for 60 seconds to produce a uniform smear layer. The root portion of each tooth was mounted on a plastic ring using cold cure acrylic resin. Specimens were then divided into three adhesive groups of 30 teeth each, Group A: ClearfilSE Bond (Kuraray), Group B: Tetric N Bond Universal (IvoclarVivadent), Group C :Futura Bond DC (Voco). All bonding agents were used according to the manufacturers’ instructions, in combination with the resin composite Tetric N Ceram (IvoclarVivadent). The samples were thermocycled, followed by shear bond strength testing using a Universal testing machine (Hounsfield). Data were subjected to statistical analysis using one-way analysis of variance (ANOVA) (P<0.05) and Post hoc Tukey’s test for inter- and intra- group analysis respectively. Results: Clearfil SE Bond yielded the highest shear bond strength values (30.9 ±4.66 MPa) which were statistically significant, followed byTetric N Bond Universal group (29.8 ±4.34) and the lowest shear bond strength values were recorded for Futura Bond DC (18.2 ±3.13). Conclusion: Clearfil SE bond and Tetric N bond Universal can be considered as better options than Futura Bond DC.


2020 ◽  
Author(s):  
Sana Lala ◽  
Thuraya Lazkani

Abstract Background:In restorative dentistry we usually use Sandwich Technique for posterior restorations where GIC is placed below and a resin composite is placed over it. The bonding strength between these two materials are low. We are looking for the best adhesive system to put it in between. We think that the self-etching bond will give the best bonding strength between them whereas total etch will give lower bonding strength than self-etching system. Methods:ION-Z GIC was bonded to resin composite by using two different bonding agents. The thirty specimens used were prepared by using acrylic blocks with holes in each hole to retain the ION-Z GIC. The specimens were randomly divided into three groups:Group I: Control group.Group II: Total-etch adhesive was applied and cured over ION-Z GIC.Group III: Self-etch adhesive was applied and cured.The composite resin placed over the ION-Z GIC and cured. The shear bond strength was measured by shearing of the bonded specimens on Universal Testing Machine (Model 114) using speed of 0.1mm / minute. The reading was tabulated and subjected to statistical analysis using ANOVA and Tukey's test.Results:The test showed statistically significant difference between Group III and Group I and between Group III and Group II. Group III had the highest shear bonding strength.Conclusion:Self-etch adhesive agent produces have better shear bond strength to ION-Z than total-etch adhesive and to the group without any bonding agent.


2021 ◽  
Author(s):  
Sana Lala ◽  
Thuraya Lazkani

Abstract Background:In restorative dentistry we usually use Sandwich Technique for posterior restorations where GIC is placed below and a resin composite is placed over it. The bonding strength between these two materials are low. We are looking for the best adhesive system to put it in between. We think that the self-etching bond will give the best bonding strength between them whereas total etch will give lower bonding strength than self-etching system. Methods:ION-Z GIC was bonded to resin composite by using two different bonding agents. The thirty specimens used were prepared by using acrylic blocks with holes in each hole to retain the ION-Z GIC. The specimens were randomly divided into three groups:Group I: Control group.Group II: Total-etch adhesive was applied and cured over ION-Z GIC.Group III: Self-etch adhesive was applied and cured.The composite resin placed over the ION-Z GIC and cured. The shear bond strength was measured by shearing of the bonded specimens on Universal Testing Machine (Model 114) using speed of 0.1mm / minute. The reading was tabulated and subjected to statistical analysis using ANOVA and Tukey's test.Results:The test showed statistically significant difference between Group III and Group I and between Group III and Group II. Group III had the highest shear bonding strength.Conclusion:Self-etch adhesive agent produces have better shear bond strength to ION-Z than total-etch adhesive and to the group without any bonding agent.


2012 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Astrid Yudhit ◽  
Rusfian Dayuni Ariski S

Nowadays, glass fiber post and composite resin cores have been used in endodontic treatment for esthetics achievement. The success of this treatment was affected by some factors such as bond strength between post and cores. The aim of this study is to investigate the effect of self etch bonding agent that use as adhesive materials between glass fiber post and resin composite by its bond strength. Totally twenty samples is used in this study, and divided in two groups (n=10 for each group), bonding group agents and without bonding agent group (control). The tensile-shear bond strength tested with Universal Testing Machine. Then, the bond strength values were analyzed statistically with t-test (p≤ 0,05). The result shows that bonds strength values in bonding agent groups were higher than without bonding agent groups. But, there is no significantly different between groups. In conclusion, bonding agent did not have effect on tensile-shear bond strength between glass fiber post and resin composite.


2021 ◽  
Vol 6 (1) ◽  
pp. 65
Author(s):  
Devi Rosalinda ◽  
Dewi Puspitasari ◽  
Muhammad Yanuar Ichrom Nahzi

ABSTRACTBackground: Surface resistance between composite resin and dentin is currently one of the problems of restorative materials. Failure ofcomposite resin are still being reported in clinical studies with failure rates ranging between 5-45% based on observations for 5-17 years. Bioactive composite resin is a new type of composite resin that has mechanical and chemical properties similiar to teeth. The use of resins, bonding materials, drying time of the solvent, and type of solvent also affect the shear bond strength Purpose: The purpose of this study was to analyze the effect of air drying time bonding (self-etch) with ethanol as a solvent on the shear bond strength of bioactive composite resins. Methods: This study used 32 non-carious maxillary premolar teeth that were fixed using acrylic resin. Fiber glass with a diameter of 3 mm and thickness of 3 mm were fixed to dentin surface and applied using bioactive composite resin were divided into 4 treatment group, i.e. the group without air drying, 20 s, 40 s, and 60 s. Shear bond strength test using Universal Testing Machine. Results: One Way Anova and Post Hoc Bonferroni test showed significant differences with p=0,002 (p<0,05). The average shear bond strength value of the lowest bioactive composite resin in the group bonding without air drying with a value of 6.381 ± 2.818 MPa and the highest shear bond strength value of the bioactive composite resin in the 60 seconds bonding air drying group with a value of 11.873 ± 2.931 MPa. Conclusion: The air drying time of the bonding affects the shear bond strength of the bioactive composite resin.Keywords: Air drying time, bioactive composite resin, bonding, ethanol, shear bond strength.


2021 ◽  
Vol 24 (2) ◽  
Author(s):  
Fateme Vasei ◽  
Farahnaz Sharafeddin

Objective: To assess the shear bond strength (SBS) of resin composite to deep dentin, using 1 and 2.5% chitosan pretreatment as well as different adhesive systems. Material and Methods: 80 human maxillary molars were randomly divided to eight groups according to the type of adhesive system and dentin pretreatment (n = 10): I) two-step self-etch system (Clearfil SE bond); II) two-step etch-andrinse system (Adper single bond 2); III) 2.5% chitosan + Clearfil SE bond; IV) 2.5% chitosan +etch + Adper single bond 2; V) etch + 2.5% chitosan + Adper single bond 2; VI) 1% chitosan + Clearfil SE bond; VII) 1% chitosan + etch + Adper single bond 2; VIII) etch + 1% chitosan + Adper single bond 2 (chitosan solution (w/v): 2.5 g and 1 g of chitosan (Sigma Aldrich, USA) was dissolved in 100 ml of 1% acetic acid). Plastic molds were positioned on dentin and filled with composite (Z350, 3M ESPE, USA). SBS (MPa) was tested using a universal testing machine. ANOVA tests, Tukey’s test, and independent t test were used to analyze data (p < 0.05). Results: The highest SBS value among self-etch groups was observed with 1% chitosan (p = 0.001). In the etch-and-rinse group, the SBS of 1% chitosan was significantly lower than the other groups. Chitosan treatment following acid etching led to higher SBS in comparison to when chitosan was applied before etching, with the significant difference in 1% concentration (p = 0.030). A predominance of mix fractures was observed in dentin. Conclusion: Improved dentin bond strength can be achieved through immediate dentin pretreatment with 1% chitosan in self-etch adhesive systems. Chitosan Pretreatment may not be advantageous for etch-and-rinse adhesive systems. Keywords Adhesive system; Chitosan; Deep dentin; Shear strength.


Healthcare ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 128
Author(s):  
Satheesh B. Haralur ◽  
Salem Mohammed Alharthi ◽  
Saeed Aied Abohasel ◽  
Khalid Mohammed alqahtani

Blood–saliva contamination negatively affects the bonding potential of adhesive agents. The study aimed to assess the effect of various cleaning protocols on micro-shear bond strength (μSBS) between blood–saliva-contaminated post-etched dentin and composite resin in total-etch and self-etch adhesives. The cleaning methods tested were water rinsing, 37.5% phosphoric acid (H3PO4) re-etching, 6% sodium hypochlorite (NaoCl), 2% chlorhexidine gluconate (CXG), isopropyl alcohol (IPA), and pumice. Nono-hybrid composite cylinders with a 3-mm diameter and 2-mm height were directly cured over the dentin substrate, stored for 24 h, and subjected to 12,000 thermocycles. The shear force was exerted with a 200-μm knife-edged chisel-shaped head from a universal testing machine. The type of failure was assessed with stereomicroscope magnified images. The obtained data were evaluated by Kruskal–Wallis and Mann–Whitney U post-hoc tests. Water-rinsed contaminated dentin surfaces showed substantially reduced μSBS in the total etch from 25.93 to 20.29 Mpa and the corresponding values for the one-step self-etch adhesive were 10.10 to 8.8. Re-etching with 37.5% H3Po4 resulted in a recovery of bonding potential in both total-etch (24.58 Mpa) and self-etch adhesive (9.23 Mpa). Alternately, NaoCl and pumice cleaning showed promising results for the total-etch (23.51 Mpa) and self-etch (7.79 Mpa).


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Ahmed Mohammed Hassan ◽  
Ahmed Ali Goda ◽  
Kusai Baroudi

Objective. The aim of this study was to evaluate the effect of different disinfectant agents on bond strength of two types of resin composite materials.Methods. A total of 80 sound posterior teeth were used. They were divided into four groups(n=20)according to the dentin surface pretreatment (no treatment, chlorhexidine gluconate 2%, sodium hypochlorite 4%, and EDTA 19%). Each group was divided into two subgroups according to the type of adhesive (prime and bond 2.1 and Adper easy one). Each subgroup was further divided into two subgroups according to the type of resin composite (TPH spectrum and Tetric EvoCeram). Shear bond strength between dentin and resin composite was measured using Universal Testing Machine. Data collected were statistically analyzed byt-test and one-way ANOVA followed by Tukey’spost hoctest.Results. It was found that dentin treated with EDTA recorded the highest shear bond strength values followed by sodium hypochlorite and then chlorhexidine groups while the control group showed the lowest shear bond strength.Conclusions. The surface treatment of dentin before bonding application has a great effect on shear bond strength between resin composite and dentin surface.


2019 ◽  
Vol 7 (13) ◽  
pp. 2162-2166 ◽  
Author(s):  
Rasha M. Abdelraouf ◽  
Manar Mohammed ◽  
Fatma Abdelgawad

AIM: This study aimed to assess the shear bond strength of a self-adhering flowable resin composite versus a total-etch one to different surfaces of permanent-molars. MATERIAL AND METHODS: Thirty-six sound human permanent molars were used. The teeth were embedded in acrylic blocks, such that their buccal surfaces were shown. The teeth were divided into three groups: Group I: Uncut-Enamel, Group II: Cut-enamel-surfaces with minimal-grinding and Group III: dentin-surfaces. Half of the teeth in each group were used for bonding to a self-adhering flowable resin-composite (Dyad-flow, Kerr, USA). While the other half of each group was bonded to a total-etch flowable resin-composite (Filtek™Z350-XT,3M-ESPE, USA) which necessitate etching and bonding. Teflon-mold was used for constructing resin composite cylinders (3 × 3 mm) over the buccal surfaces. The Dyad-flow was applied in the central hole of the mould placed upon tooth-surface, and then light-cured for 20 seconds. The Filtek-Z350-XT was applied similarly after etching and bonding steps. The teeth were stored in 37°C distilled water for 24 hours. The strength was measured using a universal testing machine and statistically analysed. Modes of failure were studied using digital-microscope. RESULTS: Mean values of shear bond strength for the Dyad and Filtek-Z350-XT in the uncut-enamel were 3.5 and 24.6MPa respectively, while that for cut-enamel were 4.5 and 12.7MPa respectively (Both highly statistically significant P ≤ 0.01) and in dentin were 4.3 and 6.7MPa respectively (Statistically significant P ≤ 0.05). The failure mode for Dyad was mainly adhesive (un-cut or cut-enamel 83.3% adhesive and 16.7% mixed, while in dentin 100% adhesive). While the modes of failure for Filtek-Z350-XT in enamel, either cut or un-cut, were 50% cohesive and 50% mixed, whereas in dentin 100% adhesive. CONCLUSION: Bonding of self-etch ″Dyad-flow″ flowable resin-composite was lower than the total-etch one in enamel and dentin. Thus further material improvement may be required.


Sign in / Sign up

Export Citation Format

Share Document