scholarly journals IN SILICO STUDIES OF (S)-2-AMINO-4-(3,5-DICHLOROPHENYL) BUTANOIC ACID AGAINST LAT1 AS A RADIOTHERANOSTIC AGENT OF CANCER

Author(s):  
HOLIS ABDUL HOLIK ◽  
FAISAL MAULANA IBRAHIM ◽  
ABIB LATIFU FATAH ◽  
ARIFUDIN ACHMAD ◽  
ACHMAD HUSSEIN SUNDAWA KARTAMIHARDJA

Objective: This study aims to obtain a good activity of radiotheranostic kit for cancer which is built by combining (S)-2-amino-4-(3,5-dichlorophenyl) butanoic acid (ADPB) with various bifunctional chelators. Methods: This study was conducted through in silico method that consists of molecular docking simulation using AutoDock 4 as well as ADMET prediction using vNN-ADMET and Pre-ADMET. Six bifunctional chelators (i.e. CTPA, DOTA, H2CB-TE2A, H2CB-DO2A, NOTA, and TETA) were conjugated with ADPB as a carrier molecule and further analyzed through molecular docking and ADMET prediction. Results: The results showed that the ADPB-NOTA has the best affinity with the Gibbs free energy (ΔG) of-7.68 kcal/mol with an inhibition constant of 2.36 µM and its ability to bind with the gating residue of LAT1 (ASN258) through hydrogen interactions. Besides that, the ADPB-NOTA compound has a good ADME profile and is predicted to be safe for human use. Conclusion: This study showed that ADPB-NOTA is the most prospective candidate to be used as a radiotheranostic agent.

2020 ◽  
Vol 840 ◽  
pp. 270-276
Author(s):  
Anjas Randy Bagastama ◽  
Ahmad Husein Alkaff ◽  
Usman Sumo Friend Tambunan

Dengue is a global health problem which predominantly affected the tropical and subtropical region of Asia, Africa, and America. However, there are no available antiviral agents to treat dengue virus (DENV) infection. This study was conducted to utilize natural product compounds as an inhibitor of NS5 Methyltransferase, a viral protein which plays an essential role in the synthesis of DENV RNA. The natural product compounds were collected from the Universal Natural Product Database (UNPD), totaling 229,000 compounds. The in silico screening of the natural product compounds was performed by molecular docking simulation method, which simulates the interaction of the compounds on the active site of the NS5 methyltransferase. From the molecular docking simulation, about 51 compounds showed better affinity and interaction compared to the standard compound, S-Adenosyl-L-Homocysteine (SAH). Then, a series of pharmacological tests were performed to find the best drug candidates by employing DataWarrior and SwissADME software. Finally, three natural product compounds, namely UNPD98966, UNPD183023, and UNDP104952, were regarded as the best inhibitor against NS5 methyltransferase based on its molecular affinity and interaction. These compounds also showed potential as drug candidates due to their desirable pharmacological properties.


Author(s):  
HOLIS ABDUL HOLIK ◽  
FAISAL MAULANA IBRAHIM ◽  
ELISHA WIANATALIE ◽  
ARIFUDIN ACHMAD ◽  
AHMAD FARIED ◽  
...  

Objective: In this study, various types of pharmacokinetic modifying linkers and chelators are combined with JPH203 to obtain the best-docked molecule for prospective radiopharmaceutical kits. Methods: AutoDock 4.2.6 and AutoDockTools 1.5.6 programs was used to do the molecular docking simulation and ADMET prediction was done using VNN-ADMET to predict the pharmacokinetics and toxicity of the ligand. Results: The result of this study showed that JPH203-linker K-NOTA has the best affinity with a docking score of about-10.7 kcal/mol and shows hydrogen interaction with Tyr259, which acts as key residue of the active site. Conclusion: Based on the results, JPH203-linker K-NOTA has good potential as a radiopharmaceutical kit of cancer.


2020 ◽  
Vol 981 ◽  
pp. 247-252
Author(s):  
Pitipat Sanphetchaloemchok ◽  
Mohd Fadhlizil Fasihi Mohd Aluwi ◽  
Kamal Rullah ◽  
Kok Wai Lam

The discovery of potent anti-inflammatory agents through inhibition of prostaglandin E2 (PGE2) via microsomal prostaglandin E2 synthase-1 (mPGES-1) blocking has been proven to be an important game changer in pharmaceutical industry in recent years. In this study, new chalcone derivative has been successfully synthesized via Claisen-Schmidt condensation reaction. The compound was then docked into mPGES-1 active site to predict anti-inflammatory properties through ligand-enzyme interaction investigation. The data collected from in silico molecular docking simulation and pharmacophore modeling studies provide important insight on the molecular conformation and further shed light towards structural modification of the future novel mPGES-1 inhibitor.


2020 ◽  
Vol 15 (2) ◽  
pp. 154-164 ◽  
Author(s):  
Ijaz Muhammad ◽  
Noor Rahman ◽  
Gul E. Nayab ◽  
Sadaf Niaz ◽  
Mohibullah Shah ◽  
...  

Background: Cancer is characterized by overexpression of p53 associated proteins, which down-regulate P53 signaling pathway. In cancer therapy, p53 activity can be restored by inhibiting the interaction of MDMX (2N0W) and MDM2 (4JGR) proteins with P53 protein. Objective: In the current, study in silico approaches were adapted to use a natural product as a source of cancer therapy. Methods: In the current study in silico approaches were adapted to use a natural product as a source of cancer therapy. For in silico studies, Chemdraw and Molecular Operating Environment were used for structure drawing and molecular docking, respectively. Flavonoids isolated from D. carota were docked with cancerous proteins. Result: Based on the docking score analysis, we found that compound 7 was the potent inhibitor of both cancerous proteins and can be used as a potent molecule for inhibition of 2N0W and 4JGR interaction with p53. Conclusion: Thus the compound 7 can be used for the revival of p53 signaling pathway function however, intensive in vitro and in vivo experiments are required to prove the in silico analysis.


2019 ◽  
Vol 13 (4) ◽  
pp. 268-276
Author(s):  
Sridevi Ayla ◽  
Monika Kallubai ◽  
Suvarnalatha Devi Pallipati ◽  
Golla Narasimha

Background:Laccase, a multicopper oxidoreductase (EC: 1.10.3.2), is a widely used enzyme in bioremediation of textile dye effluents. Fungal Laccase is preferably used as a remediating agent in the treatment and transformation of toxic organic pollutants. In this study, crude laccase from a basidiomycetes fungus, Phanerochaete sordida, was able to decolorize azo, antroquinone and indigoid dyes. In addition, interactions between dyes and enzyme were analysed using molecular docking studies.Methods:In this work, a white rot basidiomycete’s fungus, Phanerochaete sordida, was selected from forest soil isolates of Eastern Ghats, and Tirumala and lignolytic enzymes production was assayed after 7 days of incubation. The crude enzyme was checked for decolourisation of various synthetic textile dyes (Vat Brown, Acid Blue, Indigo, Reactive Blue and Reactive Black). Molecular docking studies were done using Autodock-4.2 to understand the interactions between dyes and enzymes.Results:Highest decolourisation efficiency was achieved with the crude enzyme in case of vat brown whereas the lowest decolourisation efficiency was achieved in Reactive blue decolourisation. Similar results were observed in their binding affinity with lignin peroxidase of Phanerochaete chrysosporium through molecular docking approach.Conclusion:Thus, experimental results and subsequent in silico validation involving an advanced remediation approach would be useful to reduce time and cost in other similar experiments.


Sign in / Sign up

Export Citation Format

Share Document