scholarly journals RATIONAL DESIGNING OF SUSTAINED RELEASE MATRIX FORMULATION OF ETODOLAC EMPLOYING HYPROMELLOSE, CARBOMER, EUDRAGIT AND POVIDONE

Author(s):  
Nilesh N. Mahajan ◽  
Pooja Wadhavane ◽  
Debarshi Kar Mahapatra

Objective: The existing investigation represents a challenge in formulating etodolac oral controlled release tablets employing five most prominent hydrophilic release rate retardant polymers like HPMC K100M, HPMC K4M, Carbopol 934P, Eudragit RS100, and Polyvinyl pyrrolidone K90 which are USFDA approved non-toxic substances, cost-effective, and easily available.Methods: The tablets were manufactured by wet granulation method along with talc, anhydrous lactose, and magnesium stearate. The pre-compression attributes of the produced granules and the post-compression characteristics were assessed according to the specified protocols. The formulations were accessed for their ability to release the drug in the simulated gastric media and the obtained results were fitted into various kinetic models to determine the probable drug release mechanism(s). A short-term stability study (for 90 days duration) was also performed.Results: The prepared granules demonstrated superior flow properties and packing ability, whereas the fabricated sustained release matrix batches showed excellent mechanical characteristics. The in vitro drug release profile of the hypromellose, carbomer, eudragit and povidone based sustained release matrix tablet formulations expressed drug release for the period of 12 hr following the diffusion cum erosion mechanism(s) (termed as anomalous diffusion) and illustrated comparable drug release with that of marketed formulation (Etogesic®-ER 600 mg). The produced formulations revealed splendid reproducibility and stability under accelerated conditions.Conclusion: The judiciously planned fabrication of the matrix formulations possess the ability to decrease the frequency of drug administration to twice-daily along with minimizing the blood level fluctuations, which ultimately leads to enhanced patient compliance and better therapeutic regimens.

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Amitava Roy ◽  
Kalpana Roy ◽  
Sarbani Roy ◽  
Jyotirmoy Deb ◽  
Amitava Ghosh ◽  
...  

The aim of the present work was designed to develop a model-sustained release matrix tablet formulation for Metformin hydrochloride using wet granulation technique. In the present study the formulation design was employed to statistically optimize different parameters of Metformin hydrochloride tablets at different drug-to-polymer ratios employing polymers Hydroxypropyl methylcellulose of two grades K4M and K100M as two independent variables whereas the dependent variables studied were X60, X120, T50, T90, n, and b values obtained from dissolution kinetics data. The in vitro drug release studies were carried out at simulated intestinal fluids, and the release showed a non-Fickian anomalous transport mechanism. The drug release was found to reveal zero order kinetics. The granules and the tablets were tested for their normal physical, morphological, and analytical parameters and were found to be within the satisfactory levels. There were no significant drug-polymer interactions as revealed by infrared spectra. It has been found out that on an optimum increased Hydroxypropyl methylcellulose K100M concentration and decreased Hydroxypropyl methylcellulose K4M concentration the formulations were elegant in terms of their release profiles and were found to be statistically significant and generable.


Author(s):  
P. Amsa ◽  
G. K. Mathan ◽  
S. Magibalan ◽  
E. K. Velliyangiri ◽  
T. Kalaivani ◽  
...  

The major goal of this study was to develop and evaluate Sustained release matrix tablets of Gabapentin with Hibiscus rosa - sinensis leaves mucilage prepared by using wet granulation technique with microcrystalline cellulose as a diluents and magnesium stearate as a lubricant. Pre-compression and post-compression evaluation of physicochemical parameters were carried out and to be within acceptable limits. Drug and polymer compatibility were validated by FTIR measurements. Further, tablets were evaluated for in vitro release study. To get the sustained release of Gabapentin, the concentration of Hibiscus rosa- sinensis mucilage was tuned with a gas-generating agent. The % drug release of all formulation from F1 to F5 showed 91.24%, 80.24%, 70.53%, 62.12% and 49.83% respectively. All the dosage form release kinetics was computed using zero order, first order, Higuchi, and Korsmeyer–Peppas methods. From the above results, it is concluded that the n value of formulation F5 showed 0.78 suggesting anomalous (non-fickian) behavior of the drug. Mucilage from the leaves of Hibiscus rosa-sinensis has a great retarding effect in drug release from sustained release tablets.


2017 ◽  
Vol 16 (1) ◽  
pp. 43-53
Author(s):  
Uttom Kumar ◽  
Md Samiul Islam ◽  
Shimul Halder ◽  
Abu Shara Shamsur Rouf

The objective of the present study was to design and evaluate once daily sustained release tablet of carvedilol, using two molecular weight grades of hydrophilic polymers (methocel® K4M CR and methocel®K15M CR) as release retarding materials. Two sets of formulations were prepared, where first set of four formulations (F1- F4) contained variable ratios of methocel® K4M CR and methocel® K15M CR (15% : 15%, 15% : 13%, 15% : 11% and 15% : 9%) to optimize the composition of polymers in the tablet matrices such that the drug and polymer interaction was sufficient for sustaining release up to 24 hours and second set of five formulations (F5-F9) contained variable percentages of sodium lauryl sulfate (SLS) (1.0, 1.25, 1.5, 1.75 and 2.0%) to enhance the dissolution rate of the drug from the tablet matrices because of its poor aqueous solubility. The tablets were prepared by direct compression method and evaluated for hardness, thickness, friability, weight variation and in vitro drug release. The in vitro dissolution studies were carried out in simulated gastric fluid (900 ml, pH 1.2) for 24 hours using USP type II apparatus operated at 100 rpm and 37 ± 0.05°C. The release profiles were explored and explained by zero order, first order, Higuchi, Korsmeyer-Peppas and Hixson-Crowell models. From this study, the drug release profiles for formulations F6 to F9 were found to be satisfactory and the release mechanism followed both diffusion and erosion. Due to lower percentage of SLS used, F6 was considered as the best formulation.Dhaka Univ. J. Pharm. Sci. 16(1): 43-53, 2017 (June)


1970 ◽  
Vol 8 (1) ◽  
pp. 23-30 ◽  
Author(s):  
Abul Kalam Lutful Kabir ◽  
Bishyajit Kumar Biswas ◽  
Abu Shara Shasur Rouf

The objective of this study was to develop a sustained release matrix tablet of aceclofenac usinghydroxypropyl methylcellulose (HPMC K15M and HPMC K100M CR) in various proportions as release controllingfactor by direct compression method. The powders for tableting were evaluated for angle of repose, loose bulkdensity, tapped bulk density, compressibility index, total porosity and drug content etc. The tablets were subjected tothickness, weight variation test, drug content, hardness, friability and in vitro release studies. The in vitro dissolutionstudy was carried out for 24 hours using United States Pharmacopoeia (USP) 22 paddle-type dissolution apparatus inphosphate buffer (pH 7.4). The granules showed satisfactory flow properties, compressibility index and drug contentetc. All the tablets complied with pharmacopoeial specifications. The results of dissolution studies indicated that theformulations F-2 and F-3 could extend the drug release up to 24 hours. By comparing the dissolution profiles with themarketed product, it revealed that the formulations exhibited similar drug release profile. From this study, a decreasein release kinetics of the drug was observed when the polymer concentration was increased. Kinetic modeling of invitro dissolution profiles revealed the drug release mechanism ranges from diffusion controlled or Fickian transport toanomalous type or non-Fickian transport, which was only dependent on the type and amount of polymer used. Thedrug release followed both diffusion and erosion mechanism in all cases. The drug release from these formulationswas satisfactory after 3 months storage in 40°C and 75% RH. Besides, this study explored the optimum concentrationand effect of polymer(s) on acelofenac release pattern from the tablet matrix for 24 hour period.Key words: Aceclofenac; sustained release; hydrophillic matrix; HPMC; direct compression.DOI: 10.3329/dujps.v8i1.5332Dhaka Univ. J. Pharm. Sci. 8(1): 23-30, 2009 (June)


INDIAN DRUGS ◽  
2017 ◽  
Vol 54 (07) ◽  
pp. 30-39
Author(s):  
V. S. Gharge ◽  
◽  
R. V. Korhale ◽  
P. T. Gunjal ◽  
M. B. Shinde ◽  
...  

The objective of this investigation was to develop an oral sustained release formulation of linezolid that would maximize the duration of active drug concentration in the extracellular fluid, thus assuring the therapeutic efficacy. This rationale was based on the observation that the an efficacy of linezolid depends mainly on the length of time that bacteria are exposed to antibiotic concentrations above the minimum inhibitory concentration (T>MIC). linezolid sustained release tablets were prepared by wet granulation method. A full factorial design for two-factor three levels was employed systematically to optimize drug release profile at 1, 4, 8 and 16 h. Film-coated sustained release matrix tablet exhibited fickian diffusion drug release kinetics approaching Higuchi model. The significance of the results was analyzed using analysis of non-variance (ANOVA) and P MIC for at least 24 hours.


Author(s):  
Rohitas Deshmukh

IBD is a chronic inflammatory disease of the gastrointestinal tract, particularly small and large intestine consisting of ulcerative colitis (UC) and Crohn’s disease (CD). Oral route of drug delivery is considered as the most appropriate route of drug delivery of drugs. But this route has certain limitations of poor bioavailability due to gastric degradation and increase in dose size and frequency. Therefore, the present aim of the study is to prepare and evaluate Indomethacin loaded matrix tablet using guar gum, HPMC (release controlling polymer) and citric acid to facilitate the drug solubility in the colon. A total 8 different formulations were prepared by wet granulation method and coated with Eudragit S 100 polymer a pH dependent enteric coating polymer which dissolve at colonic pH (7.4) and specifically release the drug in the colon region in sustain release fashion. The granules evaluated for its micrometrics properties and tablets were evaluated for its hardness, thickness, friability, weight variation, drug content, and in‑vitro drug release studies. The % cumulative drug release profile of all tablets was little and insignificant at pH 1.2 and 6.8. In colonic pH the coating dissolves tablets starts to release drugs. Among all the formulation the formulation F3 having guar gum and HPMC ratio 3:1 shows a maximum release of drug of 80.41±6.5%. At 24 h. The study demonstrated that the prepared tablets can release the Indomethacin in sustained release manner and helps in management of IBD with reduced side effect of the therapy. The results of this study show that oral administration of aspartame (250mg/kg body weight) was correlated to a significant increase in the lipid profile, fasting blood glucose and some marker enzymes and this increase is time related.


2012 ◽  
Vol 1 (8) ◽  
pp. 186 ◽  
Author(s):  
Urmi Das ◽  
Mohammad Salim Hossain

<p>Sustained release Carvedilol matrix tablets constituting Kollidon SR were developed in this study in an attempt to investigate the effect of release modifiers on the release profile of Carvedilol from matrix. Three matrix tablet formulations were prepared by direct compression of Kollidon SR in combination with release modifier (HPMC and Microcrystalline Cellulose) and magnesium stearate. Tablets containing only Kollidon SR with the active ingredient demonstrated a rapid rate of drug release. Incorporation of HPMC in the matrix tablet prolonged the release of drug but incorporation of Microcrystalline Cellulose showed superimposable release pattern with an initial burst effect as confirmed by mean dissolution time and Higuchi release rate data. After 7 hours of dissolution, Carvedilol release from the matrix systems were 91.42%, 83.41%, from formulation F1 and F2 respectively. Formulation F3 exhibited 100 % release at 4 hours. All the tablet formulations showed acceptable pharmaco-technical properties and complied with the in-house specifications for tablet weight variation, friability, hardness, thickness, and diameter. Prepared tablets also showed sustained release property for carvedilol. The drug release mechanism from the matrix tablets of F1 and F2 was found to be followed by Fickian and F3 by Non-Fickian mechanism.</p><p>DOI: <a href="http://dx.doi.org/10.3329/icpj.v1i8.11095">http://dx.doi.org/10.3329/icpj.v1i8.11095</a></p> <p>International Current Pharmaceutical Journal 2012, 1(8): 186-192</p>


Author(s):  
Bhikshapathi D. V. R. N. ◽  
Arun Kumar Jarathi ◽  
Suresh Gande ◽  
Viswaja Medipally ◽  
Ramesh Bomma

Background and the purpose of the study: Risedronate sodium inhibits osteoclast bone resorption and modulates bone metabolism. Risedronate has a high affinity for hydroxyapatite crystals in bone and is a potent antiresorptive agent. In the present investigation efforts were made to improve the bioavailability of risedronate sodium by increasing the residence time of the drug through sustained-release matrix capsule formulation via gastroretentive mechanism. Capsules were prepared by wet granulation technique. The influence of gel forming agents, amount of risedronate and total weight of capsules on physical properties, in vitro buoyancy, drug release, FTIR, DSC, X-ray studies were investigated. The release mechanisms were explored and explained by applying zero order, first order, Higuchi and Korsmeyer equations. The selected formulations were subjected to stability study at 40 °C/75% RH, 25 °C/60% RH for the period of three months. For all formulations, kinetics of drug release from capsules followed Higuchi’s square root of time kinetic treatment heralding diffusion as predominant mechanism of drug release. Formulation containing 25 mg HPMC K4M and 75 mg HPMC K100 LV (F-8) showed zero order release profile. There was no significant change in the selected formulation, when subjected to accelerated stability conditions over a period of three months. X-ray imaging in six healthy human volunteers revealed a mean gastric retention period of 5.60 ± 0.77 hrs for the selected formulation. Stable, sustained release effervescent floating capsules of risedronate sodium could be prepared by wet granulation technique.  


2020 ◽  
Vol 12 ◽  
Author(s):  
Sagar R. Pardeshi ◽  
Harshal A. Mistari ◽  
Rakhi S. Jain ◽  
Pankaj R. Pardeshi ◽  
Rahul L. Rajput ◽  
...  

Background: Moxifloxacin is a BCS class I drug used in the treatment of bacterial conjunctivitis and keratitis. Despite its high water solubility, it possesses limited bioavailability due to anatomical and physiological constraints associated with the eyes which required multiple administrations to achieve a therapeutic effect. Objective: In order to prolong drug release and to improve antibacterial efficacy for the treatment of bacterial keratitis and conjunctivitis, moxifloxacin loaded nanoemulsion was developed. Methods: The concentration of oil (oleic acid), surfactant (tween 80), and cosurfactant (propylene glycol) were optimized by employing a 3-level 2-factorial design of experiment for the development of nanoemulsion. The developed nanoemulsion was characterized by particle size distribution, viscosity, refractive index, pH, drug content and release, transmission electron microscopy (TEM), and antibacterial study. The compatibility of the drug with the excipients was accessed by Fourier transform infrared spectroscopy (FTIR). Result: The average globule size was found to be 198.20 nm. The TEM study reveals the globules were nearly spherical and are well distributed. In vitro drug release profile for nanoemulsion shown sustained drug release (60.12% at the end of 6 h) compared to drug solution, where complete drug released within 2 h. The antibacterial effectiveness of the drug-loaded nanoemulsion was improved against S. aureus compared with the marketed formulation. Conclusion: The formulated sustained release nanoemulsion could be a promising alternative to eye drop with improved patient compliance by minimizing dosing frequency with improved antibacterial activity.


Author(s):  
Mayuri B. Patil ◽  
Avish D. Maru ◽  
Jayshree S. Bhadane

The aim of the present study was to design and evaluate bilayer tablets of metformin hydrochloride as sustained release form for the treatment of Type-II diabetes mellitus. The basic aim of any Bi-layer tablet formulation is to separate physically or chemically incompatible ingredients and to produce repeat action or prolonged action of tablet. They are many drugs for treating type-II diabetes. Sulphonyl urea and biguanides are used commonly by a wide section of patients. Melt granulation process was used for the formulation of sustained comprising metformin layer and wet granulation of immediate comprising layer of glimepiride. The precompression studies like bulk density, tapped density, angle of repose, compressible index and post formulation studies includes weight variation, hardness, thickness, friability and dissolution study. The in-vitro release profile of Glimepiride was dissolved within 45 min, and Metformin Hydrochloride was able to release more than 12 hrs. They all the formulation was optimized formula due to its higher rate of dissolution and collate all other parameters with the official specifications.


Sign in / Sign up

Export Citation Format

Share Document