scholarly journals ADULTICIDAL ACTIVITY OF BOTANICAL OILS BY IMPREGNATED PAPER ASSAY AGAINST CULEX QUINQUEFASCIATUS SAY

Author(s):  
M. Ramar ◽  
S. Ignacimuthu ◽  
P. Manonmani ◽  
K. Murugan

Objective: The present study was undertaken with the aim of finding out the efficacy of essential oils (EOs) as anti-mosquito agents for commercial purposes. Plant source insecticides as an alternative to chemical insecticide, this study were evaluated to assess the knock-down and adulticidal prospective of the essential oils against Culex quinquefasciatus. The plant essential oil is largely cultivated throughout India and in all Tropical countries.Methods: The selected botanical essential oils were procured from commercial producers of plant essential oils and aromatic substances were used in this study. Knock-down and Adulticidal bioassay was performed according to WHO protocol. A single dose of the essential oils was used in the preliminary screening. 20 adult mosquitoes (3-5 d old glucose fed mosquitoes) were exposed on treated paper for one hour and knocked down and live mosquitoes were counted at 5 minute intervals.Results: Among the twenty three oils tested, 100% knock-down and adult mortality was recorded at 10%/cm2dose of calamus, camphor, cinnamon, citronella, clove, eucalyptus, lemongrass, pine, thyme and tulsi oils respectively. At 10 % concentration, clove oil (KT50 =1.8 and KT90 = 2.03 min) was found to be the most potential treatment. After 15 min exposure period clove oil registered the lowest knock-down dosewhich was calculated as (KD50 =1.8 %/cm2and KD90 =11.2 %/cm2). The lower and upper 95 % confidence limits for clove oil were calculated as 0.2 and 4.2 min respectively.Conclusion: From the results it can be concluded that the adult of the Cx. quinquefasciatus were susceptible to the essential oils. Such findings would be useful in promoting research aiming at the development of new agent for mosquito control on basis of chemical compounds from indigenous plant sources as an alternative to chemicals.

2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Michael Olarewaju Akintan ◽  
Joseph Onaolapo Akinneye ◽  
Oluwatosin Betty Ilelakinwa

Abstract Background Mosquitoes are vectors of parasitic diseases such as malaria, lymphatic filariasis, yellow fever, and dengue fever among others. They are well known as public enemies for their noise nuisance, biting annoyance, sleeplessness, allergic reactions, and diseases transmission during the biting and feeding activities. This then necessitate the search for insecticides of plant origin which are bio-degradable, non-toxic, and readily available for man use. Result This study, evaluated the fumigant efficacy of the powder of P. alliacea to control the adult stage of Culex mosquito. Powder of Petiveria alliacea were administered at different dose of (1 g, 2 g, 3 g, 4 g, and 5 g), respectively. Result obtained shows the fumigant effect of the powder were effective with percentage mortality of 18.33–60.00% for the leaf powder and 23.30–71.60% for the root powder within 2 h post-treatment period (P < 0.05). The synergistic effect of the leaf and root powder was also investigated. The lethal dosage (LD50) of the leaf, root, and synergistic effect of leaf and root bark powder required to kill 50% of the adult Culex quinquefasciatus was 3.76 g, 2.86 g, and 2.63 g, respectively. However, 25.06 g, 15.25 g, and 12.94 g of the leaf, root, and leaf and root powder were required to kill 90% (LD90) after a 2-h exposure period. Conclusion These finding suggested P. alliacea powder could be a good source of insecticide which may be used for the production of biopesticides. The present findings have important implications in the practical control of adult mosquito by using botanical insecticides. These plant powders are easy to prepare, inexpensive, and safe for use in mosquito control.


2023 ◽  
Vol 83 ◽  
Author(s):  
A. Hussain ◽  
I. Ilahi ◽  
H. Ahmed ◽  
S. Niaz ◽  
Z. Masood ◽  
...  

Abstract Being vector of West Nile Virus and falariasis the control of Culex quinquefasciatus is likely to be essential. Synthetic insecticide treatment is looking most effective for vectors mosquito control. However, these products are toxic to the environment and non-target organisms. Consequently, ecofriendly control of vectors mosquito is needed. In this regard botanical insecticide is looking more fruitful. Therefore, the present research aimed to investigate the effectiveness of methanolic extract and various fractions, including, n-hexane, ethyl-acetate, chloroform, and aqueous fraction, obtained from methanolic extract of Ailanthus altissima, Artemisia scoparia, and Justicia adhatoda using separating funnel against larval, pupal, and adult stages of Culex quinquefasciatus. The larvae and pupae of Culex quinquefasciatus were exposed to various concentrations (31.25-1000 ppm) of methanolic extract and its fractions for 24 hours of exposure period. For knock-down bioassay (filter paper impregnation bioassay) different concentration of the methanolic extract and its various fractions (i.e. 0.0625, 0.125, 0.25, 0.5 and 1mg/mL) were applied for 1 hour exposure period. The results were statistically analysed using standard deviation, probit analysis, and linear regression. The R2 values of larvae, pupae, and adult range from 0.4 to 0.99. The values of LC50 (concentration causing 50% mortality) for late 3rd instar larvae after 24 hours exposure period range from 93-1856.7 ppm, while LC90 values range from 424 -7635.5ppm. The values of LC50for pupae range form 1326.7-6818.4ppm and and values of LC90 range from 3667.3-17427.9ppm, respectively. The KDT50 range from 0.30 to 2.8% and KDT90 values range from1.2 to 110.8%, respectively. In conclusion, Justicia adhatoda may be effective for controlling populations of vector mosquito.


Insects ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 337 ◽  
Author(s):  
Ephantus J. Muturi ◽  
William T. Hay ◽  
Robert W. Behle ◽  
Gordon W. Selling

Although the insecticidal properties of some plant essential oils are well-documented, their use in integrated pest and vector management is complicated by their high volatility, low thermal stability, high sensitivity to oxidation, and low solubility in water. We investigated the use of bio-based N-1-hexadecylammonium chloride and sodium palmitate amylose inclusion complexes as emulsifiers for two essential oils, garlic and asafoetida, known to be highly toxic to mosquito larvae. Four emulsions of each essential oil based on amylose hexadecylammonium chloride and amylose sodium palmitate inclusion complexes were evaluated for their toxicity against Aedes aegypti L. larvae relative to bulk essential oils. All emulsions were significantly more toxic than the bulk essential oil with the lethal dosage ratios ranging from 1.09–1.30 relative to bulk essential oil. Droplet numbers ranged from 1.11 × 109 to 9.55 × 109 per mL and did not change significantly after a 6-month storage period. These findings demonstrated that amylose inclusion complexes enhanced the toxicity of essential oils and could be used to develop new essential oil based larvicides for use in integrated vector management.


Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 132 ◽  
Author(s):  
Edmund Norris ◽  
Jacob Johnson ◽  
Aaron Gross ◽  
Lyric Bartholomay ◽  
Joel Coats

Mosquito-borne diseases account for the deaths of approximately 700,000 people annually throughout the world, with many more succumbing to the debilitating side effects associated with these etiologic disease agents. This is exacerbated in many countries where the lack of mosquito control and resources to prevent and treat mosquito-borne disease coincide. As populations of mosquito species grow more resistant to currently utilized control chemistries, the need for new and effective chemical means for vector control is more important than ever. Previous work revealed that plant essential oils enhance the toxicity of permethrin against multiple mosquito species that are of particular importance to public health. In this study, we screened permethrin and deltamethrin in combination with plant essential oils against a pyrethroid-susceptible and a pyrethroid-resistant strain of both Aedes aegypti and Anopheles gambiae. A number of plant essential oils significantly enhanced the toxicity of pyrethroids equal to or better than piperonyl butoxide, a commonly used synthetic synergist, in all strains tested. Significant synergism of pyrethroids was also observed for specific combinations of plant essential oils and pyrethroids. Moreover, plant essential oils significantly inhibited both cytochrome P450 and glutathione S-transferase activities, suggesting that the inhibition of detoxification contributes to the enhancement or synergism of plant essential oils for pyrethroids. This study highlights the potential of using diverse plant oils as insecticide additives to augment the efficacy of insecticidal formulations.


2019 ◽  
Vol 36 (E) ◽  
pp. 31-41
Author(s):  
Izabella M. C. Pinheiro ◽  
João Henrique S. Luz ◽  
Luis Flávio N. Souza ◽  
Ana Cláudia Oliveira ◽  
Eugênio E. Oliveira ◽  
...  

The use of plant essential oils has been adopted as less hazardous to the environment and human health than synthetic insecticides used for the control of insects that transmit diseases. Despite of exerting insecticidal activities against several insect disease vectors, the potential impacts on non-target organisms exerted by essential oils extracted from Lippia sidoides (Cham.) have not received adequate attention. Here, we evaluated the susceptibility and potential changes in consumption rates of honey bees, Apis mellifera (L.), when exposed to essential oils extracted from L. sidoides. Was exposed forager bees to honey syrup (50% v/v) containing L. sidoides essential oil for 5 h. After this exposure period, the bees received regular honey syrup for another 19 h period. Six essential oil concentrations was used, namely 1.0, 1.5, 2.0, 2.5, 3.0 and 3.5 µL of essential oil/mL of syrup, and evaluated the syrup consumption and bees mortality in both periods (at the 5th and 24th h). The results reveal that independent of the essential oil concentration, the forager bees fed significantly less on L. sidoides essential oil-containing honey syrup. However, feeding on L. sidoides essential oil-containing honey syrup did not cause significant mortality when compared with bees that were not exposed to the essential oils. Thus, the results demonstrate that L. sidoides essential oils exhibited adequate selectivity against honey bees.


Author(s):  
N. Lukwa ◽  
T. Mduluza ◽  
C. Nyoni ◽  
A.T. Lukwa ◽  
M. Zimba

The knock down and insecticidal effects of the plants Tagetes minuta, Lippia javanica, Lantana camara, Tagetes erecta and Eucalyptus grandis were evaluated against Anopheles arabiensis mosquitoes in thatched round huts in Mumurwi village. Leaves from these plants were smouldered in order to provide mosquito repellent smoke. Complete knock down was provided 40 minutes after mosquitoes were exposed to smoke of T. erecta, 60 minutes to smoke of T. minuta and E. grandis and 120 minutes to smoke of L. javanica. Complete knock down of mosquitoes could not be provided by L. camara within the 140-minute exposure period. The KT50 (time required to knock down 50% of the mosquitoes) values were 24.985 minutes (T. minuta), 34.473 minutes (T. erecta), 59.119 minutes (L. javanica), 59.828 minutes (L. camara) and 25.245 minutes (E. grandis). The KT90 (time required to knock down 90% of the mosquitoes) values were 48.060 minutes (T. minuta), 50.169 minutes (T. erecta), 178.341 minutes (L. javanica), 140.220 minutes (L. camara) and 47.998 minutes (E. grandis). Mortality rates 24h after exposure were 40% (T. minuta), 100% (T. erecta), 75% (L. javanica), 90% (L. camara) and 100% (E. grandis). In conclusion, smoke from the plants T. erecta, T. minuta and E. grandis had very fast knock down rates with T. erecta, L. camara and E. grandis killing over 90% of the An. arabiensis mosquitoes. Plant smoke is important in mosquito control.


2020 ◽  
Vol 30 (2) ◽  
pp. 90
Author(s):  
Tri Lestari Mardiningsih ◽  
NFN Rismayani ◽  
NFN Ma'mun

<p><em>Essential oils such as clove, lemongrass, and citronella are known as botanical insecticides. Mixed-essential oils and a single compound of the oil itself may increase its efficacy. The experiment aimed to examine the effect of the essential oil mixture and para-menthane-3,8-diol (PMD) formulas in inhibiting of the egg-laying and mortality of brown planthopper. The study conducted at the greenhouse of Indonesian Spices and Medicinal Crops Research Institute, Bogor. The formula tested were clove+citronella oils (1:1), clove+lemongrass oils (1:1), the single essential oil, solvent materials (a mixture of tween 80, Turpentine, and surfactant), PMD-solvent substances (emulsifier, alcohol 96%, and surfactant).  A contact application was applied to the insect. Observation parameters were egg numbers laid and brown planthopper adult and nymph mortalities. The result of the insect contact application method showed that adult mortality was not significantly different compare with control and synthetic insecticide. Based on the plant residue test,   nymph  mortality  due  to  clove  oil  +  citronella  oils  were  not  significantly <em>different from control and insecticide. Meanwhile, based  on  the insect  and plant spray  test, adult mortality on clove oil + citronella was not differently significant from the synthetic insecticide. However, the effectiveness of clove+lemongrass oils was slower. The efficacy of the oil formula to the egg laid was significantly different from the synthetic insecticide treatment, i.e., fewer eggs laid.  PMD was less effective than the essential oil formula on the nymphs and adult mortalities </em>of <em>brown planthopper</em><em>. Further field evaluations of the clove oil + citronella formulas are required.</em></em></p>


Sign in / Sign up

Export Citation Format

Share Document