scholarly journals Mosquitocidal activity of twenty-eight plant essential oils and their binary mixtures against Culex quinquefasciatus, (Diptera: Culicidae)

Heliyon ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. e06128
Author(s):  
Sudarshana Mahanta ◽  
Bulbuli Khanikor
Author(s):  
M. Ramar ◽  
S. Ignacimuthu ◽  
P. Manonmani ◽  
K. Murugan

Objective: The present study was undertaken with the aim of finding out the efficacy of essential oils (EOs) as anti-mosquito agents for commercial purposes. Plant source insecticides as an alternative to chemical insecticide, this study were evaluated to assess the knock-down and adulticidal prospective of the essential oils against Culex quinquefasciatus. The plant essential oil is largely cultivated throughout India and in all Tropical countries.Methods: The selected botanical essential oils were procured from commercial producers of plant essential oils and aromatic substances were used in this study. Knock-down and Adulticidal bioassay was performed according to WHO protocol. A single dose of the essential oils was used in the preliminary screening. 20 adult mosquitoes (3-5 d old glucose fed mosquitoes) were exposed on treated paper for one hour and knocked down and live mosquitoes were counted at 5 minute intervals.Results: Among the twenty three oils tested, 100% knock-down and adult mortality was recorded at 10%/cm2dose of calamus, camphor, cinnamon, citronella, clove, eucalyptus, lemongrass, pine, thyme and tulsi oils respectively. At 10 % concentration, clove oil (KT50 =1.8 and KT90 = 2.03 min) was found to be the most potential treatment. After 15 min exposure period clove oil registered the lowest knock-down dosewhich was calculated as (KD50 =1.8 %/cm2and KD90 =11.2 %/cm2). The lower and upper 95 % confidence limits for clove oil were calculated as 0.2 and 4.2 min respectively.Conclusion: From the results it can be concluded that the adult of the Cx. quinquefasciatus were susceptible to the essential oils. Such findings would be useful in promoting research aiming at the development of new agent for mosquito control on basis of chemical compounds from indigenous plant sources as an alternative to chemicals.


2010 ◽  
Vol 47 (4) ◽  
pp. 575-580 ◽  
Author(s):  
Tran Trung Hieu ◽  
Soon-Il Kim ◽  
Sang-Guei Lee ◽  
Young-Joon Ahn

Abstract The repellency to female Stomoxys calcitrans (L.) (Diptera: Muscidae) of 21 essential oils (EOs) alone or in combination with Calophyllum inophyllum L. (Clusiaceae) nut oil (tamanu oil) was examined using an exposed human hand bioassay. Results were compared with those of commonly used repellent N,N-diethyl-3-methylbenzamide (DEET). In tests with six human male volunteers at a dose of 0.5 mg/cm2, patchouli (protection time [PT], 3.67 h) was the most effective EO but less active than DEET (4.47 h), as judged by the PT to first bite. Very strong repellency also was produced by clove bud, lovage root, and clove leaf EOs (PT, 3.50–3.25 h), whereas strong repellency was obtained from thyme white EO (2.12 h). Thyme red, oregano, and geranium EOs exhibited moderate repellency (PT, 1.24–1.11 h). At 0.25 mg/cm2, protection time of clove bud, clove leaf, and lovage root EOs (PT, ≈1 h) was shorter than that of DEET (2.17 h). An increase in the protection time was produced by binary mixtures (PT, 2.68–2.04 h) of five EOs (clove bud, clove leaf, thyme white, patchouli, and savory) and tamanu oil (0.25:2.0 mg/cm2) compared with that of either the constituted essential oil or tamanu oil alone (PT, 0.56 h). The protection time of these binary mixtures was comparable with that of DEET. With the exception of savory EO, the other EOs, tamanu oil, and binary mixtures did not induce any adverse effects on the human volunteers at 0.5 mg/cm2. Thus, binary mixtures of essential oils and tamanu oil described merit further study as potential repellents for protection from humans and domestic animals from biting and nuisance caused by S. calcitrans.


2018 ◽  
Vol 17 (6) ◽  
pp. 167-174 ◽  
Author(s):  
Małgorzata Schollenberger ◽  
Tomasz M. Staniek ◽  
Elżbieta Paduch-Cichal ◽  
Beata Dasiewicz ◽  
Agnieszka Gadomska-Gajadhur ◽  
...  

Plant essential oils of six aromatic herb species and interspecies hybrids of the family Lamiaceae – chocolate mint (Mentha piperita × ‘Chocolate’), pineapple mint (Mentha suaveolens ‘Variegata’), apple mint (Mentha × rotundifolia), spearmint (Mentha spicata), orange mint (Mentha × piperita ‘Granada’) and strawberry mint (Mentha × villosa ‘Strawberry’) – were investigated for antimicrobial effects against plant pathogenic bacteria: Agrobacterium tumefaciens, Pseudomonas syringae pv. syringae and Xanthomonas arboricola pv. corylina. The screening was carried out in vitro on agar plates filled with the target organism. All essential oils screened exhibited a higher level of antibacterial activity against A. tumefaciens and X. arboricola pv. corylina than streptomycin used as a standard in all tests. The antimicrobial effect of streptomycin and five mint oils was at the same level for P. syringae pv. syringae. There were no significant differences in the influence of the chocolate mint oil on the growth inhibition of all bacteria tested. Plant essential oils from pineapple mint, apple mint, spearmint and strawberry mint showed the weakest antimicrobial activity against P. syringae pv. syringae and the strongest towards A. tumefaciens and X. arboricola pv. corylina. The essential oils from strawberry mint, pineapple mint, spearmint and apple mint had the strongest effect on A. tumefaciens, and the lowest inhibitory activity was exhibited by the chocolate mint and orange mint essential oils. X. arboricola pv. corylina was the most sensitive to the strawberry mint, pineapple mint and spearmint oils. The chocolate mint oil showed the greatest activity against P. syringae pv. syringae.


2020 ◽  
Vol 75 (7-8) ◽  
pp. 179-182
Author(s):  
Murray B. Isman

AbstractInterest in the discovery and development of plant essential oils for use as bioinsecticides has grown enormously in the past 20 years. However, successful commercialization and utilization of crop protection products based on essential oils has thus far lagged far behind their promise based on this large body of research, most notably because with the exceptions of the USA and Australia, such products receive no special status from regulatory agencies that approve new pesticides for use. Essential oil-based insecticides have now been used in the USA for well over a decade, and more recently have seen use in the European Union (EU), Korea, and about a dozen other countries, with demonstrated efficacy against a wide range of pests and in numerous crop systems. For the most part these products are based on commodity essential oils developed as flavor and fragrance agents for the food and cosmetic industries, as there are formidable logistic, economic, and regulatory challenges to the use of many other essential oils that otherwise possess potentially useful bioactivity against pests. In spite of these limitations, the overall prospects for biopesticides, including those based on essential oils, are encouraging as the demand for sustainably-produced and/or organic food continues to increase worldwide.


2021 ◽  
Vol 95 ◽  
Author(s):  
A.I.P. Sousa ◽  
C.R. Silva ◽  
H.N. Costa-Júnior ◽  
N.C.S. Silva ◽  
J.A.O. Pinto ◽  
...  

Abstract The continuous use of synthetic anthelmintics against gastrointestinal nematodes (GINs) has resulted in the increased resistance, which is why alternative methods are being sought, such as the use of natural products. Plant essential oils (EOs) have been considered as potential products for the control of GINs. However, the chemical composition and, consequently, the biological activity of EOs vary in different plant cultivars. The aim of this study was to evaluate the anthelmintic activity of EOs from cultivars of Ocimum basilicum L. and that of their major constituents against Haemonchus contortus. The EOs from 16 cultivars as well the pure compound linalool, methyl chavicol, citral and eugenol were used in the assessment of the inhibition of H. contortus egg hatch. In addition, the composition of three cultivars was simulated using a combination of the two major compounds from each. The EOs from different cultivars showed mean Inhibition Concentration (IC50) varying from 0.56 to 2.22 mg/mL. The cultivar with the highest egg-hatch inhibition, Napoletano, is constituted mainly of linalool and methyl chavicol. Among the individual compounds tested, citral was the most effective (IC50 0.30 mg/mL). The best combination of compounds was obtained with 11% eugenol plus 64% linalool (IC50 0.44 mg/mL), simulating the Italian Large Leaf (Richters) cultivar. We conclude that different cultivars of O. basilicum show different anthelmintic potential, with cultivars containing linalool and methyl chavicol being the most promising; and that citral or methyl chavicol isolated should also be considered for the development of new anthelmintic formulations.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 776
Author(s):  
Kristina Jonušaite ◽  
Petras Rimantas Venskutonis ◽  
Gines Benito Martínez-Hernández ◽  
Amaury Taboada-Rodríguez ◽  
Gema Nieto ◽  
...  

The antioxidant capacity of oregano (OEO) and clove (CLEO) essential oils and black elderberry (Sambucus nigra) flower extract (SNE) were compared with butylhydroxytoluene (BHT) regarding its protection against lipid peroxidation and microbial counts in salmon burgers stored at 4 °C for 14 days and after cooking. The content of total phenols was 5.74% in OEO, 2.64% in CLEO and 2.67 % in the SNE. The total phenolic content and the antioxidant capacity were significantly higher (p < 0.05) for SNE and OEO. Both essential oils showed a similar IC50 and inhibition percentage of lipid peroxidation to BHT. The combination of OEO and SNE reduced 29% of thiobarbituric acid reactive substances (TBARS), while BHT reduced 31% of TBARS generated during refrigeration storage in salmon burgers in relation to the control sample without antioxidants. Additionally, the microbial counts after 14 days of refrigeration were the lowest in burgers when the combination of OEO and SNE was used. This study concludes that OEO and SNE can be used as inhibitors of lipid oxidation in salmon products and as natural candidates to replace commonly used synthetic antioxidants and antimicrobials in these food products.


2014 ◽  
Vol 17 (6) ◽  
pp. 1146-1155 ◽  
Author(s):  
Ahmed F. Sahab ◽  
Soher Aly ◽  
Amal S. Hathout ◽  
El-Sayed H. Ziedan ◽  
Bassem A. Sabry

Meat Science ◽  
2006 ◽  
Vol 73 (2) ◽  
pp. 236-244 ◽  
Author(s):  
Mounia Oussalah ◽  
Stéphane Caillet ◽  
Linda Saucier ◽  
Monique Lacroix

Sign in / Sign up

Export Citation Format

Share Document