scholarly journals ANALYTICAL METHOD VALIDATION OF ICP-AES FOR ANALYSIS OF CADMIUM, CHROMIUM, CUPRUM, MANGAN AND NICKEL IN MILK

Author(s):  
DAVID ALEXANDER ◽  
Abdul Rohman

Objective: The aim of this research was to validate inductively coupled plasma-atomic emission spectroscopy (ICP-AES) for quantitative analysis of cadmium (Cd), chromium (Cr), cuprum (Cu), mangan (Mn) and nickel (Ni) in milk products. Methods: The heavy metals in milk were determined using ICP-AES at optimized wavelength. The method was validated by assessing several validation parameters which included linearity and range, accuracy, precision and sensitivity expressed by the limit of detection and limit of quantification. The validated method was then used for the analysis of milks commercially available. Results: ICP-AES for determination of Cd, Cr, Cu, Mn, and Ni was linear over a certain concentration range with a coefficient correlation value of>0.997. The limit of quantification values of Cd, Cr, Cu, Mn, and Ni were 0.0047; 0.0050; 0.0066; 0.0061; and 0.0169 µg/ml, respectively. The precision of analytical method exhibited relative standard deviation (RSD) values of 3.18%; 4.17%; 3.05%; 2.93%; and 4.47% during repeatability test and 5.28%; 5.06%; 3.67%; 3.67%; and 11.17% during intermediate precision of Cd, Cr, Cu, Mn, and Ni respectively. The recoveries of these metals assessed using standard addition method were 92.25; 90.88; 102.87; 94.50; and 86.85%, respectively. Conclusion: ICP-AES offered a reliable and fast method for the determination of heavy metals in milk products. The developed method could be proposed as an official method for determination of heavy metals in milk products.

Author(s):  
Ayya Rajendra Prasad ◽  
Jayanthi Vijaya Ratna

 Objective: The objective of this study was developed and validated a novel, specific, precise, and simple ultraviolet (UV)-spectrophotometric method for the estimation of norfloxacin present in taste masked drug-resin complex.Methods: UV-spectrophotometric determination was performed with ELICO SL 1500 UV-visible spectrophotometer using 0.1 N HCl as a medium. The spectrum of the standard solution was run from 200 to 400 nm range for the determination of absorption maximum (λ max). λ max of norfloxacin was found at 278 nm. The absorbance of standard solutions of 1, 2, 3, 4, and 5 μg/ml of drug solution was measured at an absorption maximum at 278 nm against the blank. Then, a graph was plotted by taking concentration on X-axis and absorbance on Y-axis which gave a straight line. Validation parameters such as linearity and range, selectivity and specificity, limit of detection (LOD) and limit of quantification (LOQ), accuracy, precision, and robustness were evaluated as per the International Conference on Harmonization (ICH) guidelines.Results: Linearity for the UV-spectrophotometric method was noted over a concentration range of 1–5 μg/ml with a correlation coefficient of 0.9995. The LOD and LOQ for norfloxacin were found at 0.39 μg/ml and 1.19 μg/ml, respectively. Accuracy was in between 99.00% and 99.17%. % relative standard deviation for repeatability, intraday precision, and interday precision was found to be 0.600, in between 0.291 and 0.410, and in between 0.682 and 1.439, respectively. The proposed UV spectrophotometric method is found to be robust.Conclusion: The proposed UV-spectrophotometric method was validated according to the ICH guidelines, and results and statistical parameters demonstrated that the developed method is sensitive, precise, reliable, and simple for the estimation of norfloxacin present in taste masked drug-resin complex.


2020 ◽  
pp. 1-8
Author(s):  
M. Pernica ◽  
J. Martiník ◽  
R. Boško ◽  
V. Zušťáková ◽  
K. Benešová ◽  
...  

The present study describes using molecularly imprinted polymer (MIP) technology for determination of patulin (PAT) and 5-hydroxymethylfurfural (5-HMF) in beverages by ultra-high performance liquid chromatography coupled to photodiode array (UPLC-PDA). PAT (4-hydroxy-4H-furo[3,2-c]pyran-2(6H)-one) is a mycotoxin produced by Penicillium fungi and Penicillium expansum is probably the most commonly encountered species that infects apples during their growth, harvest, storage or processing. The occurrence of PAT as a natural contaminant of apples is a worldwide problem. 5-HMF (also known as 5-(hydroxymethyl) furan-2-carbaldehyde), is formed in the Maillard reaction as well as during caramelisation. It is a good storage time-temperature marker and flavour indicator, especially in beverages such as wine, beer, but also cider and apple juice which may contain PAT. PAT and 5-HMF were separated within 2 min using a Luna Omega C18 column and the PDA detector wavelength was set to 276 nm. The validation parameters of the analytical method such as linearity, limit of detection, limit of quantification, accuracy and precision were tested. The calibration curves were linear at least in the range 50-1000 ng/ml with a good linearity (R2>0.999) for both analytes, the limit of detection and the limit of quantification for PAT and 5-HMF were in the range 4.9-6.6 and 16.1-21.8 μg/l, respectively. The recoveries of the selected analyte were in the range 61.9-109.0% with a precision of <8.2% (relative standard deviation (RSD)) for PAT and in the range 50.8-98.0% with a precision of <10.0% (RSD) for 5-HMF. The validated procedure was successfully applied for the analysis of PAT and 5-HMF in beverages from retail shops.


2009 ◽  
Vol 63 (6) ◽  
Author(s):  
Faten Nour El-Dien ◽  
Gehad Mohamed ◽  
Eman Frag

AbstractA simple, sensitive and accurate spectrophotometric method for the determination of sulphonamides (sulphamethoxazole (SMZ), sulphaguanidine (SGD), sulphaquinoxaline sodium (SQX), sulphametrole (SMR), and sulphadimidine sodium (SDD)) has been developed. The charge-transfer reactions between sulphonamides as n-electron donors and 7,7,8,8-tetracyanoquinodimethane (TCNQ), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), and 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone (chloranilic acid, p-CLA) as π-acceptors resulting in highly coloured complexes were studied. Experimental conditions for these CT reactions were carefully optimised. Beer’s law is valid over the concentration ranges from 4–280 µg mL−1, 4–260 µg mL−1, 4–200 µg mL−1, and 4–200 µg mL−1 of SMZ, SGD, SQX, and SDD using DDQ reagent, respectively. While the calibration curves are linear in the concentration ranges from 4–180 µg mL−1, 4–80 µg mL−1, 4–60 µg mL−1, 4–180 µg mL−1, and 4–60 µg mL−1 of SMZ, SGD, SQX, SMR, and SDD, respectively, using TCNQ reagent and from 4–380 µg mL−1 and 4–300 µg mL−1 of SQX and SDD, respectively, using p-CLA reagent, respectively. Different analytical parameters, namely molar absorptivity (ε), standard deviation, relative standard deviation, correlation coefficient, limit of detection, and limit of quantification, were calculated. The results obtained by the proposed methods are in good agreement with those obtained by the official method as indicated by the percent recovery values.


Author(s):  
Ahsaana Hamsa ◽  
K. Praseetha ◽  
K. P. Dijin Raj ◽  
T. V. Ashira ◽  
O. V. Athira ◽  
...  

A Sensitive, fast, linear and accurate liquid chromatography technique was developed for the simultaneous determination of Umeclidinium and Vilanterol in Powder dosage form. The estimation was carried out using Phenomenex C18 column (150 × 4.6 mm, 5μ) with ammonium acetate: acetonitrile taken in the ratio 60:40 as mobile phase and pumped at a flow rate of 0.9 ml/min at 300C. Detection wavelength selected was 245 nm. Retention times of Umeclidinium and Vilanterol were found to be 2.219 min and 2.794 min. The method was validated in terms of linearity, precision, accuracy, limit of detection, limit of quantification as per International council for harmonization guidelines. Degradation studies performed indicated the stability of the drug. All of these analytical validation parameters were evaluated, and the percent relative standard deviations were calculated, indicating the method's suitability for determination of Umeclidinium and Vilanterol in pharmaceutical dosage form.


Author(s):  
Valmir Gomes De Souza ◽  
FabrÍcio Havy Dantas De Andrade ◽  
Fabio Santos De Souza ◽  
Rui Oliveira Macedo

Objective: The Anadenanthera colubrina (Vell.) Brennan var. cebil is a medicinal plant that has been used for the treatment of many diseases in the northeastern region of Brazil. This plant contains secondary metabolites such as quercetin, a flavonoid that is known by its antioxidant and anti-inflammatory effects. The aim of this work is to propose the validation of an analytical method using high-performance liquid chromatography with diode array detector (HPLC-DAD) for the quantification of quercetin and standardization of the hydroalcoholic extract (HAE) of A. colubrina.Methods: The A. colubrina extracts were prepared by the maceration process with powdered leaves at 20% weight: volume (w/v) and a hydroalcoholic solution at 50% volume: volume (v/v) for 120 h at room temperature. After pretreatment of the hydroalcoholic extract, the quercetin marker was used for quantification and proceeded to the evaluation of validation parameters for the method using HPLC-DAD.Results: The analytical method proved to be specific. Linear over the range 1.4–26.6 µg/ml, regression analysis showed a good correlation coefficient (R2= 0.999); the limit of detection (LOD) and the limit of quantification (LOQ) were 0.27 and 0.81 μg/ml respectively. The relative standard deviation (RSD) did not exceed 2.5% for precision. The proposed method was validated with an average recovery of 92.5–97.5%.Conclusion: The method was validated using HPLC-DAD, allowing the quantification of quercetin in the standardisation process of extracts and quality control of the herbal drug containing A. colubrina Phyto complex.


Toxins ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 87 ◽  
Author(s):  
Wenbo Guo ◽  
Kai Fan ◽  
Dongxia Nie ◽  
Jiajia Meng ◽  
Qingwen Huang ◽  
...  

A simple and reliable analytical method for the simultaneous determination of alternariol (AOH), altenuene (ALT), tentoxin (TEN), altenusin (ALS), tenuazonic acid (TeA), and alternariol monomethyl ether (AME) in grapes was developed by ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS). A modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) procedure with the extraction by acetonitrile and purification by sodium chloride (0.5 g) and anhydrous magnesium sulfate (0.5 g) was established to recover the six Alternaria toxins. After validation by determining the linearity (R2 > 0.99), recovery (77.8–101.6%), sensitivity (limit of detection in the range of 0.03–0.21 μg kg−1, and limit of quantification in the range of 0.09–0.48 μg kg−1), and precision (relative standard deviation (RSD) ≤ 12.9%), the analytical method was successfully applied to reveal the contamination state of Alternaria toxins in grapes. Among 56 grape samples, 40 (incidence of 71.4%) were contaminated with Alternaria toxins. TEN was the most frequently found mycotoxin (37.5%), with a concentration range of 0.10–1.64 μg kg−1, followed by TeA (28.6%) and AOH (26.8%). ALT (10.7%), AME (3.6%), and ALS (5.4%) were also detected in some samples. To the best of our knowledge, this is the first report about the Alternaria toxins contamination in grapes in China.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Indhu Priya Mabbu ◽  
G. Sumathi ◽  
N. Devanna

Abstract Background The aim of the present method is to develop and validate a specific, sensitive, precise, and accurate liquid chromatography-mass spectrometry (LC-MS) method for the estimation of the phenyl vinyl sulfone in the eletriptan hydrobromide. The effective separation of the phenyl vinyl sulfone was achieved by the Symmetry C18 (50 × 4.6 mm, 3.5 μm) column and a mobile phase composition of 0.1%v/v ammonia buffer to methanol (5:95 v/v), using 0.45 ml/min flow rate and 20 μl of injection volume, with methanol used as diluent. The phenyl vinyl sulfone was monitored on atomic pressure chemical ionization mode mass spectrometer with positive polarity mode. Results The retention time of phenyl vinyl sulfone was found at 2.13 min. The limit of detection (LOD) and limit of quantification (LOQ) were observed at 1.43 ppm and 4.77 ppm concentration respectively; the linear range was found in the concentration ranges from 4.77 to 27.00 ppm with regression coefficient of 0.9990 and accuracy in the range of 97.50–102.10%. The percentage relative standard deviation (% RSD) for six replicates said to be injections were less than 10%. Conclusion The proposed method was validated successfully as per ICH guidelines. Hence, this is employed for the determination of phenyl vinyl sulfone in the eletriptan hydrobromide.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1837
Author(s):  
Harischandra Naik Rathod ◽  
Bheemanna Mallappa ◽  
Pallavi Malenahalli Sidramappa ◽  
Chandra Sekhara Reddy Vennapusa ◽  
Pavankumar Kamin ◽  
...  

A quick, sensitive, and reproducible analytical method for the determination of 77 multiclass pesticides and their metabolites in Capsicum and tomato by gas and liquid chromatography tandem mass spectrometry was standardized and validated. The limit of detection of 0.19 to 10.91 and limit of quantification of 0.63 to 36.34 µg·kg−1 for Capsicum and 0.10 to 9.55 µg·kg−1 (LOD) and 0.35 to 33.43 µg·kg−1 (LOQ) for tomato. The method involves extraction of sample with acetonitrile, purification by dispersive solid phase extraction using primary secondary amine and graphitized carbon black. The recoveries of all pesticides were in the range of 75 to 110% with a relative standard deviation of less than 20%. Similarly, the method precision was evaluated interms of repeatability (RSDr) and reproducibility (RSDwR) by spiking of mixed pesticides standards at 100 µg·kg−1 recorded anRSD of less than 20%. The matrix effect was acceptable and no significant variation was observed in both the matrices except for few pesticides. The estimated measurement uncertainty found acceptable for all the pesticides. This method found suitable for analysis of vegetable samples drawn from market and farm gates.


Author(s):  
Murat Soyseven ◽  
Rüstem Keçili ◽  
Hassan Y Aboul-Enein ◽  
Göksel Arli

Abstract A novel analytical method, based on high-performance liquid chromatography with a UV (HPLC-UV) detection system for the sensitive detection of a genotoxic impurity (GTI) 5-amino-2-chloropyridine (5A2Cl) in a model active pharmaceutical ingredient (API) tenoxicam (TNX), has been developed and validated. The HPLC-UV method was used for the determination of GTI 5A2Cl in API TNX. The compounds were separated using a mobile phase composed of water (pH 3 adjusted with orthophosphoric acid): MeOH, (50:50: v/v) on a C18 column (150 × 4.6 mm i.d., 2.7 μm) at a flow rate of 0.7 mL min−1. Detection was carried out in the 254 nm wavelength. Column temperature was maintained at 40°C during the analyses and 10 μL volume was injected into the HPLC-UV system. The method was validated in the range of 1–40 μg mL−1. The obtained calibration curves for the GTI compound was found linear with equation, y = 40766x − 1125,6 (R2 = 0.999). The developed analytical method toward the target compounds was accurate, and the achieved limit of detection and limit of quantification values for the target compound 5A2Cl were 0.015 and 0.048 μg mL−1, respectively. The recovery values were calculated and found to be between 98.80 and 100.03%. The developed RP-HPLC-UV analytical method in this research is accurate, precise, rapid, simple and appropriate for the sensitive analysis of target GTI 5A2Cl in model API TNX.


2003 ◽  
Vol 68 (8-9) ◽  
pp. 691-698 ◽  
Author(s):  
Milena Jelikic-Stankov ◽  
Predrag Djurdjevic ◽  
Dejan Stankov

In this work a new enzymatic method for the determination of uric acid in human serum has been developed. The method is based on the oxidative coupling reaction between the N-methyl-N-(4-aminophenyl)-3-methoxyaniline (NCP) reagent and the hydrogen ? donor reagent N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3-methylaniline (TOOS), in the system involving three enzymes: uricase, peroxidase and ascorbate oxidase. Using this method uric acid could be determined in concentrations up to 1.428 mmol/L, with a relative standard deviation of up to 1.8 %. The effect of the medium pH and the NCP concentration on the linearity of the chromogen absorbance versus the uric acid concentration curve was investigated. The influence of the uricase activity on the maximum rate of uric acid oxidation was also examined. The use of the NCP reagent demonstrated a more precise and more sensitive determination of the uric acid compared to the determination with 4-aminoantipyrine (4-AA) as the coupling regent. The sensitivity of the method determined from the calibration curve was 0.71 absorbance units per mmol/L of uric acid; the limit of detection was LOD = 0.0035 mmol/L and the limit of quantification was LOQ = 0.015 mmol/L of uric acid.


Sign in / Sign up

Export Citation Format

Share Document