scholarly journals ENHANCING DISSOLUTION RATE OF INDOMETHACIN BY IN SITU CRYSTALIZATION; DEVELOPMENT OF ORALLY DISINTEGRATING TABLETS

Author(s):  
Nadia H. Naiem ◽  
Ebtessam A. Essa ◽  
Gamal M. Elmaghraby

Objective: The main objective of this study was to investigate the potential of in situ crystallization of indomethacin, in presence or absence of hydrophilic materials, to improve drug dissolution with the goal of developing fast disintegrating tablets.Methods: Indomethacin crystals were prepared by bottom up approach. Water containing hydrophilic additive (polymer or/and surfactant) was added to ethanolic solution of indomethacin while stirring. The selected polymers were hydroxylpropylmethyl cellulose E5 (HPMC E5), polyethylene glycol 6000 (PEG6000) and polyvinylpyrrolidone K40 (PVP K40). The surfactants used were Tween80 and Glucire 44/14. The precipitated particles were collected and air dried. Solid state characterization were performed in addition to in vitro release studies in both acidic (0.1 N HCL) and alkaline medium (phosphate buffer pH 6.8). Optimized formulation was selected to develop fast disintegrating tablets.Results: Thermal behavior suggested modulation in crystalline nature with reduction in particle size that was confirmed by X-ray diffraction results. Infrared spectroscopy excluded any interaction between drug and hydrophilic excipients. Drug dissolution in acid media showed slight improve in drug release, while marked increase was observed in the alkaline media. Combination between Tween80 and HPMC (F7) showed the best dissolution parameters with 5-folds enhancement in release efficiency (RE) compared to pure drug. Formula F7 was successively used to formulate fast disintegrating tablets with prompted release of 58% of the loaded dose and RE of 83%.Conclusion: In situ crystallization of indomethacin is a good approach for enhanced dissolution rate with the presence of hydrophilic additives during precipitation process improving the efficiency.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Mauro Banchero ◽  
Silvia Ronchetti ◽  
Luigi Manna

Complexes of methyl-β-cyclodextrin and ketoprofen, a crystalline anti-inflammatory drug with poor water solubility, have been prepared for the first time in the presence of supercritical CO2at 40°C and 20 MPa. The supercritical treatment allows these pharmaceutical formulations to be prepared without the use of any auxiliary agents or organic solvents. The treated samples were characterized through differential scanning calorimetry, X-ray diffractometry, and the Fourier transform infrared spectroscopy to exclude the presence of crystalline drug and check the formation of the complexes. The increase of the drug dissolution rate was investigated performing in vitro release tests in aqueous solutions. The results showed that the supercritical treatment can be an efficient method to obtain inclusion complexes with enhanced release kinetics. The operating methods of the release tests, that is, the “tablet method” or the “dispersed amount method,” affected both the dissolution rate and its dependence on the drug amount in the samples. On the contrary, the variation of the pH of the dissolution medium did not show any effect on the release rate of the supercritical complexes.


2020 ◽  
Vol 10 (5) ◽  
pp. 649-663
Author(s):  
Reena Siwach ◽  
Parijat Pandey ◽  
Harish Dureja

Background: The rate-limiting step in the oral absorption of BCS class II drugs is dissolution. Their low solubility is one of the major obstacles in the process of drug development. Dissolution rate can be increased by decreasing the particle size to the nano range, eventually leading to increased bioavailability. Objective: : In the present study, glimepiride loaded nanoparticles were prepared to enhance the dissolution rate. The aim of the work was to examine the effect of polymer-drug ratio, solvent-antisolvent ratio and speed of mixing on in vitro release of glimepiride. Methods: Glimepiride is an antidiabetic drug belonging to the BCS class II drugs. The polymeric nanoparticles were formulated according to Box-Behnken Design (BBD) using nanoprecipitation technique. The prepared nanoparticles were evaluated for in vitro drug release, loading capacity, entrapment efficiency, and percentage yield. Result: It was found that NP-8 has maximum in vitro drug release and was selected as an optimized batch. Analysis of Variance (ANOVA) was applied to the in vitro drug release to study the fitness and significance of the model. The batch NP-8 showed 70.34 ± 1.09% in vitro drug release in 0.1 N methanolic HCl and 92.02 ± 1.87% drug release in phosphate buffer pH 7.8. The release data revealed that the nanoparticles followed zero order kinetics. Conclusion: The study revealed that the incorporation of glimepiride into gelucire 50/13 resulted in enhanced dissolution rate.


2018 ◽  
Vol 10 (5) ◽  
pp. 76
Author(s):  
Methaq Hamad Sabar ◽  
Iman Sabah Jaafar ◽  
Masar Basim Mohsin Mohamed

Objective: The aim of this study was to formulate ketoconazole (keto) as oral floating in situ gel to slow the release of keto in the stomach.Methods: Sodium alginate (Na alginate) was used as a primary polymer in the preparation of the in situ gel and was supported by the following polymers: guar gum (GG), hydroxypropyl methylcellulose (HPMC) K4M, K15M and carbapol 940 as viscosity enhancing agents. As a consequence, and to complete the gelation process of above formulations was by adding the calcium carbonate (CaCO3). The in situ gels were investigated by the following tests: floating lag time, floating duration, viscosity, drug content, in vitro gelling studies and in vitro release study.Results: The study showed that the faster release was obtained with F1 which contained Na alginate alone. Additionally, reduction in Na alginate concentration resulted in significant increase in drug release. It was also noted that the increase in GG (viscosity enhancing polymer) concentration resulted in non-significant decrease in percent drug release and the reduction in CaCO3 concentration led to significant increase in drug release. Moreover, the release of drug was also affected by grade of viscosity enhancing polymer, the faster release was observed with the formula which contained a polymer of low viscosity (HPMC K4M) and an opposite result was with the high viscosity polymer (HPMCK15M).Conclusion: This study showed the formulation of Na alginate with GG and CaCO3, led to gain floating in situ gel and a sustained release of keto. 


INDIAN DRUGS ◽  
2017 ◽  
Vol 54 (02) ◽  
pp. 76-78
Author(s):  
A Shirodker ◽  
◽  
S. Bhangle ◽  
R. Gude

The present study involved formulation of an in situ gelling system of brimonidine tartrate and timolol maleate for the treatment of glaucoma. Carbopol® 980 NF, xanthum gum and hydroxypropyl methylcellulose K4 M were used as polymers. The prepared in situ gelling systems were evaluated for clarity, appearance, texture analysis, pH, viscosity, rheological properties, in vitro gelation, isotonicity, drug content uniformity, in vitro release studies, microbiological evaluation, ex vivo release studies and stability testing. The results of the attenuated total reflectance spectroscopy and differential scanning calorimetry studies confirmed that there is no incompatibility between the drugs and the excipients. The formulations exhibited pseudoplastic rheology and formulation 3 showed the highest release of both the drugs from the formulation. The stability studies showed that the formulation was stable over the given period of time. Thus, it is evident that the in situ gelling system is a promising drug delivery system for the treatment of glaucoma.


INDIAN DRUGS ◽  
2021 ◽  
Vol 57 (11) ◽  
pp. 22-26
Author(s):  
Manisha Dhere ◽  
◽  
Arti Majumdar ◽  
Neelesh Malviya

In the present research, newly developed complex with sodium caprylate was investigated for solubility and dissolution enhancement of eluxadoline. Complexes were prepared in different ratios by solvent evaporation method and characterised solubility study, Infrared spectroscopy (IR), Diffrential scanning calorimetry (DSC), X-Ray Diffraction (XRD), drug content analysis and in vitro Drug release. The solubility and dissolution rate revealed most suitable ratio of eluxadoline and sodium caprylate (1:4). The IR, DSC and X-RD data also confirmed the results. It was concluded that complex prepared with (1:4 drug:sodium caprylate ratio) using solvent evaporation method showed significant improvement in solubility and drug dissolution.


INDIAN DRUGS ◽  
2015 ◽  
Vol 52 (07) ◽  
pp. 33-35
Author(s):  
A Dubey ◽  
◽  
P Prabhu ◽  
N Nair ◽  
K Beladiya ◽  
...  

The aim of the present investigation was to develop a combination of timolol maleate and travoprost niosomal in situ gelling system for the treatment of glaucoma. Niosomes were prepared by thin film hydration technique using rotary flash evaporator. A 32 factorial design was utilized to study the effect of the molar ratio of Span 60 (X1) and cholesterol (X2) on vesicle size, drug entrapment efficiency and in vitro release study. On the basis of vesicle size, maximum entrapment efficiency and in vitro release of drug, best formulations were selected for the preparation of niosomal in situ gel (Drop). On the basis of gelling time and viscosity, optimized ratio of the polymers was selected for the desired preparation. Selected niosomal batches were dispersed in carbopol 940 and HPMC K4M polymer solution (combination IF6) to form in situ gel niosomal formulations (Drop). The gelling time of the niosomal in situ gel (NIF1) was found to be the best (+++) and the viscosity was found to be 1190 cP. Zeta potential, average size analysis, polydispersibility index value was found to be -45.1 mV, 256.5 nm, 0.228 respectively. In vitro drug release was found to be within the range of 50.23 ± 0.54 to 60.23 ± 0.33% over the period of 6 h. IOP lowering activity of best formulation (NIF1) showed more significant and sustained effect than the marketed eye drops. Best formulation (NIF1) was found to be stable, sterile, non irritant and isotonic. Hence niosomal in situ gelling combination system may have the potential of bringing better application than the conventional ocular therapy with improved ocular bioavailability and increased patient compliance.


Author(s):  
PAMU SANDHYA

Objective: The main objective of this study was to preparation and evaluation of efavirenz (EFV) to enhance its solubility and dissolution rate by self-emulsifying drug delivery system. Methods: EFV self-emulsifying drug delivery systems (SNEDDS) were formulated using different oils, surfactant, and co-surfactant. Peceol, Tween 20, and Capmul MCM were used as oil, surfactant, and co-surfactant, respectively, followed by the evaluation by the performance of different tests such as visual observation, solubility studies, thermodynamic stability study, transmittance studies, drug content, and in-vitro release study. Results: Fourier-transform infrared studies revealed negligible drug and polymer interaction. From the phase diagram, it was observed that self-emulsifying region was enhanced with increasing surfactant and co-surfactant concentrations with oil. F13 was selected as optimized formulation on the basis of physicochemical parameters, particle size, and in-vitro dissolution studies with the release of 98.39±5.10% drug in 1 hour. The optimized formulation size was found to be 156.7 nm as mean droplet size and Z-Average of 808.6 nm with -18.3 mV as zeta potential. Conclusion: The study demonstrated that SNEDDS was a promising strategy to enhance the dissolution rate of EFV by improving solubility.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Elham Khodaverdi ◽  
Fatemeh Kheirandish ◽  
Farnaz Sadat Mirzazadeh Tekie ◽  
Bibi Zahra Khashyarmanesh ◽  
Farzin Hadizadeh ◽  
...  

In situ forming delivery systems composed of block copolymers are attracting substantial attention due to their ease of use, biocompatibility, and biodegradability. In this study, the thermoresponsive triblock copolymer PLGA-PEG-PLGA was studied as a dexamethasone delivery system. Dexamethasone, a synthetic glucocorticoid, is used clinically to improve inflammation, pain, and the hyperemesis of chemotherapy, and it is applied experimentally as a differentiation factor in tissue engineering. PLGA-PEG-PLGA was synthesised under microwave irradiation for 5 min. The obtained copolymer was characterised to determine its structure and phase transition temperature. An in vitro release study was conducted for various copolymer structures and drug concentrations. The yield of the reaction and HNMR analysis confirmed the appropriateness of the microwave-assisted method for PLGA-PEG-PLGA synthesis. Phase transition temperature was affected by the drug molecule as well as by the copolymer concentration and structure. An in vitro release study demonstrated that release occurs mainly by diffusion and does not depend on the copolymer structure or dexamethasone concentration.


Author(s):  
AMRIN SHAIKH ◽  
PRASHANT BHIDE ◽  
REESHWA NACHINOLKAR

Objective: The aim of the present investigation was to design gels for the topical delivery of celecoxib and evaluate with an aim to increase its penetration through the skin and thereby its flux. Method: The solubility of celecoxib is shown to be increased by preparing solid dispersions (SDs) using carriers such as mannitol, polyvinylpyrrolidone (PVP-K30), polyethylene glycol (PEG) 6000 and urea by solvent evaporation, fusion, and coevaporation methods. In vitro release profile of all SD was comparatively evaluated and studied against the pure drug. The prepared SD was subjected for percent practical yield, drug content, infrared spectroscopy, differential scanning calorimetry analysis, X-ray diffraction studies, and scanning electron microscopy (SEM) imaging. The celecoxib gel was prepared using hydroxypropyl methyl cellulose (HPMC) and Carbopol containing a permeation enhancer dimethyl sulfoxide (DMSO) at different proportions and evaluated for drug content, pH, viscosity, spreadability, extrudability, stability, and in vitro drug release. Results: Faster dissolution rate was exhibited by SD containing 1:5 ratio of celecoxib: PVP K-30 prepared by coevaporation method. In vitro drug release of celecoxib, gels revealed that formulation with HPMC has higher drug release as compared to Carbopol. Conclusion: The increase in dissolution rate for SD is observed in the following order of PVP K-30>urea>mannitol>PEG 6000. The CPD5 gel containing a SD CP5 and 20% DMSO showed the best in vitro release 74.13% at the end of 6 h.


2019 ◽  
Vol 16 (4) ◽  
pp. 331-340
Author(s):  
Hanmei Li ◽  
Yuling Xu ◽  
Yuna Tong ◽  
Yin Dan ◽  
Tingting Zhou ◽  
...  

Objective: In this study, an injectable Sucrose Acetate Isobutyrate (SAIB) drug delivery system (SADS) was designed and fabricated for the sustained release of Ropivacaine (RP) to prolong the duration of local anesthesia. Methods: By mixing SAIB, RP, and N-methyl-2-pyrrolidone, the SADS was prepared in a sol state with low viscosity before injection. After subcutaneous injection, the pre-gel solution underwent gelation in situ to form a drug-released depot. Result: The in vitro release profiles and in vivo pharmacokinetic analysis indicated that RP-SADS had suitable controlled release properties. Particularly, the RP-SADS significantly reduced the initial burst release after subcutaneous injection in rats. Conclusion: In a pharmacodynamic analysis of rats, the duration of nerve blockade was prolonged by over 3-fold for the RP-SADS formulation compared to RP solution. Additionally, RP-SADS showed good biocompatibility in vitro and in vivo. Thus, the SADS-based depot technology is a safe drug delivery strategy for the sustained release of local anesthetics with long-term analgesia effects.


Sign in / Sign up

Export Citation Format

Share Document