scholarly journals DRUMSTICK MUCILAGE MICROSPHERES FOR CONTROLLED RELEASE OF LAMIVUDINE: DESIGN, OPTIMIZATION AND IN VITRO EVALUATION

Author(s):  
Santosh G Gada ◽  
ANANDKUMAR Y. ◽  
C. MALLIKARJUN SETTY

Objective: The objective of this study was to design and evaluate controlled release mucoadhesive microspheres of lamivudine using mucoadhesive polymers and mucilage. Methods: Mucoadhesive microspheres of lamivudine were formulated by ionic gelation method. The response surface methodology was adapted for optimization of formulation using central composite design (CCD) for two factors at three levels each was employed to study the effect of independent variables, Sodium alginate-drumstick mucilage (X1) and calcium chloride (CaCl2) concentration (X2) on dependent variables, namely drug encapsulation efficiency (DEE) and particle size (PS). Optimized drumstick mucilage mucoadhesive microspheres of lamivudine were obtained by using numerical optimization of desirability approach. The observed microspheres were coincided well with the predicted values by the experimental design. Results: The microspheres formed were spherical in shape, and Particle size (PS) ranged between 681.63-941.57μm. Drug encapsulation efficiency (DEE) was ranged between 69.63-94.56 %. The drug release for an optimized formulation was 96.58 %. The mechanism of drug release from microspheres followed Korsemeyer’s-Peppas and exponential ‘n’ value was greater than 0.45, indicating the drug release was non-fickian i.e., swelling followed by erosion mechanism. Conclusion: This work suggests that mucoadhesive microspheres, an effective drug delivery system for lamivudine, can be prepared using drumstick mucilage in improving the bioavailability of the drug.

2019 ◽  
Vol 9 (1) ◽  
pp. 190-194
Author(s):  
Rima Kassab ◽  
Dima Moussa ◽  
Cherine Saliba ◽  
Paolo Yammine

Non-aqueous oil-in-oil solvent evaporation technique is used for the preparation of polycaprolactone microspheres loaded with the antibiotic metronidazole by introducing different masses for the drug. The prepared microspheres are characterized by calculating drug encapsulation and drug loading percentages, measuring the corresponding particle size, performing FT-IR polymer-drug compatibility study and in vitro drug release. Moderate drug encapsulation values with a maximum of 34% are observed due to the low molecular weight of the drug. Microspheres had a particle size ranging between 130 and 280 µm with a spherical profile and porous structure. FT-IR study showed no interactions between the drug and the polymer. Drug release studies showed fast release rates for all the formulations with the slowest release for the highest drug loading. Keywords: polycaprolactone, metronidazole, targeted drug delivery, solvent evaporation.


2019 ◽  
Vol 9 (4-A) ◽  
pp. 425-437
Author(s):  
Khushboo Verma ◽  
Jhakeshwar Prasad ◽  
Suman Saha ◽  
Surabhi Sahu

The aim of this work was to develop and evaluate curcumin loaded liposome and its bio- enhancement. Curcumin was selected as a natural drug for liposome formulation. Curcumin show variety of biological activity but it also shows poor bioavailability due to low aqueous solubility (1 µg/ml), poor absorption and rapid metabolism so that piperine was selected as bio enhancer to improve curcumin bioavailability. Soy lecithin and cholesterol were used to prepared curcumin and curcumin-piperine loaded liposome at different ratio by thin film hydration method because of easy to perform, and high encapsulation rates of lipid. The all liposome formulations (F1-F5) were evaluated by mean particle size, polydispersity index, zeta potential, encapsulation efficiency and drug release. Bioavailability was also determined on rat. Blood samples were collected at specific intervals, and plasma was separated by ultracentrifugation. Plasma was analyzed by high-performance liquid chromatography at 425 nm taking acetonitrile: water (75:25 v/v) acidified with 2% acetic acid as a mobile phase at a flow rate of 0.5 ml/min using C18 column. The mean particle size was found in the range between 800-1100 that indicate liposome are large unilamellar vesical types. By zeta potential study its conform that the all formulation was stable. The encapsulation efficiency of all liposome formulation are varied between 59-67%. In vitro drug release was analyse in 7.4 pH phosphate buffer, the maximum %CDR observed at the 12 hrs., and formulation are follow sustained release thus they reduce metabolism, good absorption rate which improve bioavailability of drug. From in-vivo study, it is clear that curcumin-piperine liposomal formulation, increases Cmax, area under the curve, and mean residence time significantly as compared to pure curcumin and pure curcumin liposome. Keywords: liposome; Curcumin; Piperine, Thin film hydration method; Bioavailability


2013 ◽  
Vol 49 (4) ◽  
pp. 889-901 ◽  
Author(s):  
Trishna Bal ◽  
Shubhranshu Sengupta ◽  
Padala Narasimha Murthy

Inclusion complexes of carvedilol(CR) with hydroxyl propyl beta-cyclodextrin (HPBCD) was prepared using co-grinding technique. Then, the inclusion complex was microencapsulated using combinations of Eudragit NE30D (EU) and sodium alginate (SA) utilizing orifice gelation technique. The formulations were analysed by using Scanning electron microscopy (SEM), Fourier Transform Infrared spectroscopy (FTIR), Differential scanning Calorimetry (DSC) and X-ray diffractometer (XRD) and also evaluated for particle size, encapsulation efficiency, production yield, swelling capacity, mucoadhesive properties, zeta potential and drug release. The microcapsules were smooth and showed no visible cracks and extended drug release of 55.2006% up to 12 hours in phosphate buffer of pH 6.8, showing particle size within the range of 264.5-358.5 µm, and encapsulation efficiency of 99.337±0.0100-66.2753±0.0014%.The in vitro release data of optimized batch of microcapsules were plotted in various kinetic equations to understand the mechanisms and kinetics of drug release, which followed first order kinetics, value of "n" is calculated to be 0.459 and drug release was diffusion controlled. The mice were fed with diet for inducing high blood pressure and the in vivo antihypertensive activity of formulations was carried out administering the optimized formulations and pure drug separately by oral feeding and measured by B.P Monwin IITC Life Science instrument and the results indicated that the bioavailability of carvedilol was increased both in vitro and in vivo with the mucoadhesive polymers showing primary role in retarding the drug release.


Author(s):  
GANESH N. SHARMA ◽  
C. H. PRAVEEN KUMAR ◽  
BIRENDRA SHRIVASTAVA ◽  
B. KUMAR

Objective: The present research was designed to produce methylprednisolone containing chitosan-based nanoparticles using Box-Behnken Design (BBD) and Response Surface Methodology (RSM) for optimization. Methods: Nanostructures were prepared using the ionic gelation method with screened process parameters. According to the design, methylprednisolone chitosan-based nanoparticles (MCSNPs) were optimized using factors like methylprednisolone concentration, stirring speed and temperature whereas particle size, zeta potential and % encapsulation efficiency as responses. From the observed values of responses with confirmation location and desirability, the predicted values were very close to the observed values. Results: Observed values for the optimized formulation have a particle size of 243±2.33 nm with an encapsulation efficiency of 79.3±7.2%. Morphology of the particles using scanning electron microscopy reveals nearly spherical shaped particles. Methylprednisolone was released in vitro in a sustained manner for about 24 h in simulated colonic fluid pH 7, pH 7.8 (Fasted state) and phosphate buffer pH 7.4, when compared to simulated colonic fluid at pH 6 (Fed state). Optimized MCSNPs followed Korsmeyer peppas kinetics with drug release mechanism as anomalous transport. Conclusion: Application of Box-Behnken design and Response Surface Methodology using Design Expert software was successfully used in the optimization of methylprednisolone loaded chitosan-based nanoparticles with high encapsulation efficiency.


Author(s):  
Santosh Gada ◽  
ANANDKUMAR Y. ◽  
C. MALLIKARJUNA SETTY

Objective: The objective of the present study was to investigate the possibility of obtaining a controlled, relatively constant effective level of lamivudine microspheres. Methods: Lamivudine loaded sodium alginate (SA) and tamarind mucilage(TM) mucoadhesive microspheres were prepared by ionic gelation technique with three different proportions of SA and TM with different concentrations of CaCl2. The prepared microspheres were evaluated for drug loading, particle size distribution, surface morphology, FTIR, in vitro wash off, in vitro release and stability studies. Results: The microspheres were found to be free flowing having diameter ranging from 769.22 to 978.56 µm, drug encapsulation efficiency (DEE) was found to be 65.28 to 92.33%. Percent drug release after 12 h were ranging from 85±1.51 to 97±1.44. In vitro release profile of all formulations shows slow controlled release up to 12 h. In vitro wash off studies shown fairly good mucoadhesivity with 20% microspheres adhered after 6h. Stability studies showed that no significant change in particle size and maximum DEE in comparison to the formulation stored at room temperature. Results: The lamivudine loaded SA-TM mucoadhesive microspheres can be conveniently prepared which showed better result and it may be used full for controlling the drug release and improve the bioavailability.


2015 ◽  
Vol 17 (4) ◽  
pp. 32-36
Author(s):  
Erhan Ozsagiroglu ◽  
Yuksel Avcibasi Guvenilir

Abstract The aim of this study was to encapsulate, L-ascorbic acid, in biopolymers in order to obtain (i) enhancing its encapsulation efficiency (ii) increasing drug release ratio using different pH mediums. Microparticles based on polycaprolactone, polyethylene glycol and casein are prepared by spray drying technique. Microparticles are in vitro characterized in terms of yield of production, particle size, morphology, encapsulation efficiency, and drug release. In this manner, the importance of the study is producing of a stable and effective drug encapsulation system by PCL-PEG-CS polymer mixture by spray dryer. We achieved minimum 27.540±0.656 μm particle size with 0.512 m2/g surface area, 84.05% maximum drug loading, and 68.92% drug release ratio at pH 9.6. Release profiles are fitted to previously developed kinetic models to differentiate possible release mechanisms. The Korsmeyer–Peppas model is the best described each release scenario, and the drug release is governed by non-Fickian diffusion at pH 9.6. Our study proposed as an alternative or adjuvants for controlling release of L-ascorbic acid.


Author(s):  
Rajashri B. Ambikar ◽  
Ashok V. Bhosale

Aims: The aim of this work is the formulation of Eudragit RL100 polymeric microsponges. The Microsponge Delivery System is a patented technique in which there is a polymeric system consisting of porous particles. Methodology: The ratio of Diclofenac sodium and eudragit RL100 varied from 1:1 to 13: 1 to formulate microsponge. Dichloromethane was used as internal phase and polyvinylalcohol was used as an external phase. The formed microsponges were characterized for particle size, entrapment efficiency, drug content, in vitro drug release and SEM. Results: With increase in drug: polymer ratio there is increase in production yield from 20.04% to 72.14%, and entrapment efficiency from 20.11% to 70.77%.  Drug content of formed microsponge varied between 50.18% to 91.09% whereas particle size ranged from 1.41 µm to 17.66 µm. Microsponge formulations F3, F4 and F5 showed desired particle size hence studied for further evaluation. Formulation F3, F4 and F5 showed controlled release of 89.54%, 98.5% and 98.76% respectively up to 6 hr. F3 showed more controlled release at the end of 6 hr. The drug release from microsponges was best fitted to Higuchi’s diffusion kinetics for all microsponge formulations with non-Fickian diffusion mechanism. The formed microsponge particles have spherical porous structure. Conclusion: Study showed significance of Microsponge Delivery System for ophthalmic administration.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 446 ◽  
Author(s):  
Dina Fathalla ◽  
Eman M. K. Youssef ◽  
Ghareb M. Soliman

To enhance anthralin efficacy against psoriasis and reduce its notorious side effects, it was loaded into various liposomal and ethosomal preparations. The nanocarriers were characterized for drug encapsulation efficiency, size, morphology and compatibility between various components. Optimum formulations were dispersed in various gel bases and drug release kinetics were studied. Clinical efficacy and safety of liposomal and ethosomal Pluronic®F-127 gels were evaluated in patients having psoriasis (clinicaltrials.gov identifier is NCT03348462). Safety was assessed by recording various adverse events. Drug encapsulation efficiency ≥97.2% and ≥77% were obtained for liposomes and ethosomes, respectively. Particle sizes of 116 to 199 nm and 146 to 381 nm were observed for liposomes and ethosomes, respectively. Fourier-Transform infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC) studies confirmed the absence of interaction between anthralin and various nanocarrier components. Tested gel bases showed excellent ability to sustain drug release. At baseline, the patients had a median Psoriasis Area and Severity Index (PASI) of 3.4 for liposomes and 3.6 for ethosomes without significant difference. After treatment, mean PASI change was −68.66% and −81.84% for liposomes and ethosomes, respectively with a significant difference in favor of ethosomes. No adverse effects were detected in both groups. Anthralin ethosomes could be considered as a potential treatment of psoriasis.


Sign in / Sign up

Export Citation Format

Share Document