scholarly journals OPTIMIZATION AND CHARACTERIZATION OF CHITOSAN-BASED NANOPARTICLES CONTAINING METHYLPREDNISOLONE USING BOX-BEHNKEN DESIGN FOR THE TREATMENT OF CROHN’S DISEASE

Author(s):  
GANESH N. SHARMA ◽  
C. H. PRAVEEN KUMAR ◽  
BIRENDRA SHRIVASTAVA ◽  
B. KUMAR

Objective: The present research was designed to produce methylprednisolone containing chitosan-based nanoparticles using Box-Behnken Design (BBD) and Response Surface Methodology (RSM) for optimization. Methods: Nanostructures were prepared using the ionic gelation method with screened process parameters. According to the design, methylprednisolone chitosan-based nanoparticles (MCSNPs) were optimized using factors like methylprednisolone concentration, stirring speed and temperature whereas particle size, zeta potential and % encapsulation efficiency as responses. From the observed values of responses with confirmation location and desirability, the predicted values were very close to the observed values. Results: Observed values for the optimized formulation have a particle size of 243±2.33 nm with an encapsulation efficiency of 79.3±7.2%. Morphology of the particles using scanning electron microscopy reveals nearly spherical shaped particles. Methylprednisolone was released in vitro in a sustained manner for about 24 h in simulated colonic fluid pH 7, pH 7.8 (Fasted state) and phosphate buffer pH 7.4, when compared to simulated colonic fluid at pH 6 (Fed state). Optimized MCSNPs followed Korsmeyer peppas kinetics with drug release mechanism as anomalous transport. Conclusion: Application of Box-Behnken design and Response Surface Methodology using Design Expert software was successfully used in the optimization of methylprednisolone loaded chitosan-based nanoparticles with high encapsulation efficiency.

2020 ◽  
Vol 11 (1) ◽  
pp. 532-545
Author(s):  
Ganesh Narayan Sharma ◽  
Praveen Kumar Ch ◽  
Birendra Shrivastava ◽  
Kumar B ◽  
Arindam Chatterjee

The present research was designed to improve the permeability of sulfasalazine by loading it into chitosan nanoparticles using the ionic gelation method. The process parameters were screened and optimized through Box-Behnken design. 13 formulations containing sulfasalazine chitosan-based nanoparticles (SCSNPs) were optimized using particle size, zeta potential, and % encapsulation efficiency as responses. Results were optimized based on the desirability function shown in 2D contour plots and 3D response surface plots. The effect of every factor on responses was statistically analyzed using ANOVA and p-Value, and the correlation coefficient of all the responses was found to be >0.99 and >0.96 for optimized CSNPs and optimized SCSNPs respectively with p<0.05. From the predicted and observed values of responses, the optimized formulation (SCSNPs) has a particle size of 261±3.06 nm, with an encapsulation efficiency of 81.3±5.3%. Morphology of the particles using scanning electron microscopy reveals nearly spherical shaped particles with a zeta potential of +41.4±0.5 mV. In-vitro studies acknowledge that sulfasalazine was released in a sustained manner for about 24 hrs in simulated colonic fluid pH 7 and phosphate buffer pH 7.4,  when compared to a simulated colonic fluid at fed (pH 6) and fasted state (pH 7.8). Optimized SCSNPs followed Korsmeyer Peppas kinetics with a drug release mechanism as non-fickian diffusion (anomalous transport).


Author(s):  
Ming Zhang ◽  
Kuo Zhang ◽  
Jinpeng Wang ◽  
Runjuan Zhou ◽  
Jiyuan Li ◽  
...  

Abstract The waste pomelo peel was pyrolyzed at 400 °C to prepare biochar and used as adsorbent to remove norfloxacin (NOR) from simulated wastewater. The adsorption conditions of norfloxacin by biochar were optimized by response surface methodology (RSM). On the basis of single-factor experiment, the adsorption conditions of biochar dosage, solution pH and reaction temperature were optimized by Box-Behnken Design (BBD), and the quadratic polynomial regression model of response value Y1 (NOR removal efficiency) and Y2 (NOR adsorption capacity) were obtained respectively. The results show that the two models are reasonable and reliable. The influence of single factor was as follows: solution pH &gt; biochar dosage &gt; reaction temperature. The interaction between biochar dosage and solution pH was very significant. The optimal adsorption conditions after optimization were as follows: biochar dosage = 0.5 g/L, solution pH = 3, and reaction temperature = 45 °C. The Y1 and Y2 obtained in the verification experiment were 75.68% and 3.0272 mg/g, respectively, which were only 2.38% and 0.0242 mg/g different from the theoretical predicted values of the model. Therefore, the theoretical model constructed by response surface methodology can be used to optimize the adsorption conditions of norfloxacin in water.


2021 ◽  
Vol 11 (1) ◽  
pp. 325-332
Author(s):  
Joselito Abierta Olalo

Plastics play an essential role in packaging materials because of their durability to different environmental conditions. With its importance in the community lies the problem with waste disposal. Plastic is a non-biodegradable material, making it a big problem, especially when thrown in dumpsites. In solving the plastic problem, one efficient way to reduce its volume is through thermal processing such as pyrolysis. This study used the pyrolysis method to recover energy from plastic waste. Liquid oil from plastic was comparable to regular fuel used in powering engines. Before the pyrolysis process, a 3k factorial Box-Behnken Design was used in determining the number of experiments to be used. The output oil yield in each pyrolysis runs was optimized in different parameters, such as temperature, residence time, and particle size using response surface methodology to determine the optimum oil yield.  Between polyethylene (PE), mixed plastic, and polystyrene (PS), PS produced its highest oil yield of 90 %. In comparison, mixed plastic produced only its highest oil yield of 45 % in 500 ºC temperature, 120 min residence time, and 3 cm particle size. The produced quadratic mathematical models in PE, mixed, and PS plastic were significant in which the p-values were less than 0.05. Using mathematical models, the optimum oil yield for PE (467.68 ºC, 120 min residence time, 2 cm particle size), mixed (500 ºC, 120 min residence time, 2.75 cm particle size) and PS plastic (500 ºC, 120 min residence time, 2 cm particle size) were 75.39 %, 46.74 %, and 91.38 %, respectively


Author(s):  
Santosh G Gada ◽  
ANANDKUMAR Y. ◽  
C. MALLIKARJUN SETTY

Objective: The objective of this study was to design and evaluate controlled release mucoadhesive microspheres of lamivudine using mucoadhesive polymers and mucilage. Methods: Mucoadhesive microspheres of lamivudine were formulated by ionic gelation method. The response surface methodology was adapted for optimization of formulation using central composite design (CCD) for two factors at three levels each was employed to study the effect of independent variables, Sodium alginate-drumstick mucilage (X1) and calcium chloride (CaCl2) concentration (X2) on dependent variables, namely drug encapsulation efficiency (DEE) and particle size (PS). Optimized drumstick mucilage mucoadhesive microspheres of lamivudine were obtained by using numerical optimization of desirability approach. The observed microspheres were coincided well with the predicted values by the experimental design. Results: The microspheres formed were spherical in shape, and Particle size (PS) ranged between 681.63-941.57μm. Drug encapsulation efficiency (DEE) was ranged between 69.63-94.56 %. The drug release for an optimized formulation was 96.58 %. The mechanism of drug release from microspheres followed Korsemeyer’s-Peppas and exponential ‘n’ value was greater than 0.45, indicating the drug release was non-fickian i.e., swelling followed by erosion mechanism. Conclusion: This work suggests that mucoadhesive microspheres, an effective drug delivery system for lamivudine, can be prepared using drumstick mucilage in improving the bioavailability of the drug.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 101
Author(s):  
Touseef Nawaz ◽  
Muhammad Iqbal ◽  
Barkat Ali Khan ◽  
Asif Nawaz ◽  
Talib Hussain ◽  
...  

Nanoparticles are used increasingly for the treatment of different disorders, including burn wounds of the skin, due to their important role in wound healing. In this study, acriflavine-loaded poly (ε-caprolactone) nanoparticles (ACR-PCL-NPs) were prepared using a double-emulsion solvent evaporation method. All the formulations were prepared and optimized by using a Box–Behnken design. Formulations were evaluated for the effect of independent variables, i.e., poly (ε-caprolactone) (PCL) amount (X1), stirring speed of external phase (X2), and polyvinyl alcohol (PVA) concentration (X3), on the formulation-dependent variables (particle size, polydispersity index (PDI), and encapsulation efficiency) of ACR-PCL-NPs. The zeta potential, PDI, particle size, and encapsulation efficiency of optimized ACR-PCL-NPs were found to be −3.98 ± 1.58 mV, 0.270 ± 0.19, 469.2 ± 5.6 nm, and 71.9 ± 5.32%, respectively. The independent variables were found to be in excellent correlation with the dependent variables. The release of acriflavine from optimized ACR-PCL-NPs was in biphasic style with the initial burst release, followed by a slow release for up to 24 h of the in vitro study. Morphological studies of optimized ACR-PCL-NPs revealed the smooth surfaces and spherical shapes of the particles. Thermal and FTIR analyses revealed the drug–polymer compatibility of ACR-PCL-NPs. The drug-treated group showed significant re-epithelialization, as compared to the controlled group.


2010 ◽  
Vol 5 (1) ◽  
Author(s):  
Sudesh S ◽  
Meenakshi M ◽  
Sheeja R.Y ◽  
Thanapalan Murugesan

In the present work, crab shell was used as the biosorbent to remove copper from aqueous solution. Batch experiments were performed at different initial copper concentration of copper solutions (1-40 g/l), initial pH (2-9), temperature (20-400°C), and biosorbent dosages (2-10 g/l). The maximum removal of copper using crab shell occurred at a pH of 3 and at a temperature of 400°C using an optimum biosorbent dosage of 5 g/l. A mathematical model was proposed to identify the effects of the individual interactions of these variables on the biosorption of copper. The results have been modeled using response surface methodology using a Box-Behnken design. The response surface method was developed using three levels (-1, 0, +1) with the above mentioned four factors. The second order quadratic regression model fitted the experimental data with Prob > F to be < 0.0001. The experimental values were found to be in good agreement with the predicted values, with a satisfactory correlation coefficient of R2 = 0.9999.


2020 ◽  
Vol 11 (3) ◽  
pp. 10027-10039

The current study focusses on the optimization of Copper oxide nanoparticles (CuO NPs) biosynthesis with Alternanthera sessilis (L.) extract using response surface methodology (RSM). The effect of time, pH, and extract to metal concentration ratio on the yield of synthesized nanoparticles (NPs) were estimated using Box–Behnken design. The influence of each of the parameters, as mentioned earlier, was determined by synthesizing nanoparticles under different conditions. A total of 29 experimental runs were carried out to estimate the crucial parameters. Extract to the metal ratio was found to be the vital parameter for yield optimization based on the p-values (p-value < 0.05). The physicochemical property of NPs, like size, was estimated to be in the range of 10-20 nm. In zebrafish, 48 hpf and 72 hpf were measured at 90 µM to reduce dysfunction and mortality during organ development. These results can have a valuable impact on eco-toxicological effects.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5418 ◽  
Author(s):  
Xiangchun Ruan ◽  
Xiuge Gao ◽  
Ying Gao ◽  
Lin Peng ◽  
Hui Ji ◽  
...  

Sustained-release formulations of ivermectin (IVM) are useful for controlling parasitic diseases in animals. In this work, an IVM bolus made from microcrystalline cellulose (MCC), starch and low-substituted hydroxypropyl cellulose (LS-HPC) was optimized by response surface methodology. The bolus was dissolved in a cup containing 900 mL of dissolution medium at 39.5 °C, under with stirring at 100 rpm. A quadratic model was formulated using analysis of variance according to the dissolution time. The optimized formulation of the bolus contained 8% MCC, 0.5% starch, and 0.25% LS-HPC. The length, width, and height of the prepared IVM bolus were 28.12 ± 0.14, 16.1 ± 0.13, and 13.03 ± 0.05 mm, respectively. The bolus weighed 11.4842 ± 0.1675 g (with a density of 1.95 g/cm3) and contained 458.26 ± 6.68 mg of IVM. It exhibited in vitro sustained-release for over 60 days, with a cumulative amount and percentage of released IVM of 423.72 ± 5.48 mg and 92.52 ± 1.20%, respectively. The Korsmeyer–Peppas model provided the best fit to the dissolution release kinetics, exhibiting anR2value close to 1 and the lowest Akaike Information Criterion among different models. The parametern(0.5180) of the Korsmeyer–Peppas model was between 0.45 and 0.89. It was demonstrated that the release mechanism of the IVM bolus followed a diffusive erosion style.


Sign in / Sign up

Export Citation Format

Share Document